The order topology is compact and T2 in both the scale and retracted scale of any uniform space (S, U). if (S, U) is T2 and totally bounded, the Samuel compactification associated with (S, U) can be obtained by uniformly embedding (S, U) in its order retracted scale (that is, the retracted scale with its order topology). This implies that every compact T2 space is both a closed subspace of a complete, infinitely distributive lattice in its order topology, and also a continuous, closed image of a closed subspace of a complete atomic Boolean algebra in its order topology.