We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By applying the Cayley–Dickson process to the division algebra of real octonions, one obtains a 16-dimensional real algebra known as (real) sedenions. We denote this algebra by ${{\text{A}}_{4}}$. It is a flexible quadratic algebra (with unit element 1) but not a division algebra.
We classify the subalgebras of ${{\text{A}}_{4}}$ up to conjugacy (i.e., up to the action of the automorphism group $G$ of ${{\text{A}}_{4}}$) with one exception: we leave aside the more complicated case of classifying the quaternion subalgebras. Any nonzero subalgebra contains 1 and we show that there are no proper subalgebras of dimension 5, 7 or > 8. The proper non-division subalgebras have dimensions 3, 6 and 8. We show that in each of these dimensions there is exactly one conjugacy class of such subalgebras. There are infinitely many conjugacy classes of subalgebras in dimensions 2 and 4, but only 4 conjugacy classes in dimension 8.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.