We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the twin-width of every $n$-vertex $d$-regular graph is at most $n^{\frac{d-2}{2d-2}+o(1)}$ for any fixed integer $d \geq 2$ and that almost all $d$-regular graphs attain this bound. More generally, we obtain bounds on the twin-width of sparse Erdős–Renyi and regular random graphs, complementing the bounds in the denser regime due to Ahn, Chakraborti, Hendrey, Kim, and Oum.
Let G be a graph. Assume that to each vertex of a set of vertices $S\subseteq V(G)$ a robot is assigned. At each stage one robot can move to a neighbouring vertex. Then S is a mobile general position set of G if there exists a sequence of moves of the robots such that all the vertices of G are visited while maintaining the general position property at all times. The mobile general position number of G is the cardinality of a largest mobile general position set of G. We give bounds on the mobile general position number and determine exact values for certain common classes of graphs, including block graphs, rooted products, unicyclic graphs, Kneser graphs $K(n,2)$ and line graphs of complete graphs.
All finite simple self 2-distance graphs with no square, diamond, or triangles with a common vertex as subgraph are determined. Utilizing these results, it is shown that there is no cubic self 2-distance graph.
The prime vertex graph, $\Delta \left( X \right)$, and the common divisor graph, $\Gamma \left( X \right)$, are two graphs that have been defined on a set of positive integers $X$. Some properties of these graphs have been studied in the cases where either $X$ is the set of character degrees of a group or $X$ is the set of conjugacy class sizes of a group. In this paper, we gather some results on these graphs arising in the context of direct product of two groups.
Let G be a connected simple graph. The degree distance of G is defined as D′(G)=∑ u∈V (G)dG(u)DG(u), where DG(u) is the sum of distances between the vertex u and all other vertices in G and dG(u) denotes the degree of vertex u in G. In contrast to many established results on extremal properties of degree distance, few results in the literature deal with the degree distance of composite graphs. Towards closing this gap, we study the degree distance of some composite graphs here. We present explicit formulas for D′ (G) of three composite graphs, namely, double graphs, extended double covers and edge copied graphs.