An effective method for enhancing milk production efficiency in dairy cows is to increase milk yield and significant progress has been achieved through intense selection, assisted by the application of new reproductive techniques. However this increased milk yield has been accompanied by a slow but steady decline in dairy cow fertility. The two main reasons for this reducing level of fertility appear to be selection for increased milk yield and large herd sizes, although the affect of the introduction of Holstein genes needs to be investigated. In addition, other negative consequences such as an increase in the incidence of metabolic diseases and lameness have been observed. This has given rise to public concern that the high-yielding dairy cow may be under a state of metabolic stress during peak lactation and therefore the welfare and performance of other body functions are compromised.
The reason for this decline in fertility is not well understood, although a nutritional influence on the initiation of oestrous cycles, follicular growth, oocyte quality and early embryonic development has been implicated. In early lactation dietary intake is unable to meet the demands of milk production and most cows enter a period of negative energy balance. Negative energy balance has a broadly similar effect to undernutrition leading to a mobilization of body reserves. Furthermore diets high in rumen degradable protein lead to an excess of rumen ammonia, which before it is converted to urea by the liver and excreted in the urine, may cause an alteration in the reproductive tract environment reducing embryo survival. Such major changes in the metabolic and endocrine systems can therefore influence fertility at a number of key points.
Possible reproductive sites where inadequate nutrition may have detrimental effects include: (i) the hypothalamic/pituitary gland where gonadotropin release may be impaired; (ii) a direct effect on the ovaries, where both follicular growth patterns and corpus luteum function may be directly influenced; (iii) the quality of the oocyte prior to ovulation may be reduced and coupled with an inadequate uterine environment will result in reduced embryo survival and (iv) there may be effects on subsequent embryo development. The initiation of normal oestrous cycles post partum is usually delayed in dairy cows with a higher genetic merit for milk production, confirming that intense selection towards high milk yield can compromise reproductive function. In addition, the effects of increased milk yield may include changes in circulating GH and insulin concentrations, which in turn alter both insulin-like growth factor (IGF) and IGF binding protein production. Nutrition has recently been shown to have a direct effect at the level of both the ovaries and the uterus to alter the expression of these growth factors.
In conclusion, further knowledge is required to determine how the metabolic changes associated with high milk output reduce fertility. Identification and understanding of the mechanisms involved and the key sites of action responsible for compromised reproductive function, will enable the identification of possible indices for future multiple-trait selection programmes.