Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T06:11:27.515Z Has data issue: false hasContentIssue false

$L^p$ harmonic 1-forms on hypersurfaces with finite index

Published online by Cambridge University Press:  02 November 2022

Xiaoli Chao*
Affiliation:
School of Mathematics, Southeast University, Nanjing 211189, P. R. China
Bin Shen
Affiliation:
School of Mathematics, Southeast University, Nanjing 211189, P. R. China
Miaomiao Zhang
Affiliation:
School of Mathematics, Southeast University, Nanjing 211189, P. R. China Current Address: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P.R. China
*
*Corresponding author. E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

In the present note, we establish a finiteness theorem for $L^p$ harmonic 1-forms on hypersurfaces with finite index, which is an extension of the result of Choi and Seo (J. Geom. Phys. 129 (2018), 125–132).

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

1. Introduction

It is an interesting problem in geometry and topology to find sufficient conditions on the manifold for the space of harmonic k-forms to be trivial. The nonexistence of nontrivial $L^2$ harmonic 1-forms on a complete noncompact submanifold has been studied by many geometers.

Palmer [Reference Palmer23] proved that a complete minimal hypersurface in the Euclidean space $\mathbb{R}^{n+1}$ has no nontrivial $L^2$ harmonic 1-forms. Thereafter, using the Bochner’s vanishing technique, Miyaoka [Reference Miyaoka22] obtained the nonexistence of nontrivial $L^2$ harmonic 1-forms on complete orientable noncompact stable minimal hypersurface in a Riemannnian manifold with nonnegative sectional curvature. Later, this result was extended to more general ambient spaces [Reference Lam16, Reference Li and Wang20, Reference Matheus21]. When the curvature of the ambient manifold is negative, Seo [Reference Seo28] proved that such a vanishing theorem holds for a complete stable minimal hypersurface in $\mathbb{H}^{n+1}$ with a further assumption about the first eigenvalue of Laplacian ( $\lambda_1 \gt (2n-1)(n-1)$ ). Dung and Seo [Reference Dung and Seo8] dealed with case of the curvature of the ambient manifold is pinched and obtained the corresponding vanishing result for a complete noncompact stable non-totally geodesic minimal hypersurface in Riemannian manifold N with $K\leq K_N(K\leq 0)$ and $\lambda_1(M)\gt -K(2n-1)(n-1)$ .

A natural question is that how about the nonexistence results of nontrivial $L^p(peq 2)$ harmonic 1-forms? Yau [Reference Yau33] proved that there is no nonconstant $L^p(1<p<\infty)$ harmonic function on a complete Riemannian manifold. Later, Li and Schoen [Reference Li and Schoen19] proved that Yau’s result is valid for $L^p(0<p<\infty)$ harmonic functions on a complete manifold with nonnegative Ricci curvature. For $L^p$ harmonic forms, Greene and Wu [Reference Greene and Wu12, Reference Greene and Wu13] presented a vanishing theorem for the complete Riemannian manifolds or Kähler manifolds of nonnegative curvature. Recently, under the stability assumption, Seo [Reference Seo26] obtained that there is no nontrivial $L^{2p}$ harmonic 1-form on a stable minimal hypersurface $M^n$ of Riemannian manifold N with $K_N\geq K(K\leq 0)$ , provided $\lambda_1(M)>\frac{-2n(n-1)^2p^2K}{2n-[(n-1)p-n]^2}$ for $0<p<\frac{n}{n-1}+\sqrt{2n}$ . Moreover, Dung and Seo [Reference Dung and Seo9] studied the same topic on a complete $\delta$ -stability hypersurface in a Riemannian manifold with nonnegative sectional curvature. The first author and Lv [Reference Chao and Lv6] also investigated the nonexistence of nontrivial $L^{p}$ harmonic 1-form of a complete $\delta$ -stable hypersurface with weighted Poincaré inequality in a Riemannian manifold with sectional curvature bounded below by a nonpositive function. Most recently, without the stability assumption, Choi and Seo [Reference Choi and Seo7] proved the following finiteness theorem.

Theorem 1.1 ([Reference Choi and Seo7]). Let N be an $(n + 1)$ -dimensional complete simply connected Riemannian manifold with sectional curvature $K_N$ satisfying $-k^2 \leq K_N \leq 0$ for a nonzero constant k. Let M be an $n(n\geq3)$ -dimensional complete noncompact minimal hypersurface with finite index in N. For $\frac{n-2}{n-1}<p<\frac{n}{n-1}$ , assume that

\begin{equation*}\lambda_1(M)>\max\!\left\{\frac{(n-1)^2k^2p^2}{(n-1)p-n+2}, \frac{n(n-1)k^2p}{n-(n-1)p}\right\}.\end{equation*}

Then, $\dim H^1(L^{2p}(M))<\infty$ .

In this paper, removing the minimality assumption of M in Theorem 1.1, we can obtain the following finiteness result.

Theorem 1.2. Let N be an $(n + 1)$ -dimensional complete simply connected Riemannian manifold with sectional curvature $K_N$ satisfying $-k^2 \leq K_N \leq 0$ for a nonzero constant k. Let M be an n-dimensional $(3\leq n\leq6)$ complete noncompact hypersurface with $(\!\int_M H^n)^{\frac{2}{n}}<\frac{1}{S(n)}$ and finite index in N, where S(n) is the Sobolev constant. For $\frac{n-2}{n-1}<p<\frac{2}{\sqrt{n-1}}$ , assume that $|A|$ is bounded and

\begin{equation*}\lambda_1(M)>\max\!\left\{\frac{(n-1)^2k^2p^2}{(n-1)p-n+2}, \frac{n\sqrt{n-1}k^2p}{2-p\sqrt{n-1}}\right\}.\end{equation*}

Then, $\dim H^1(L^{2p}(M))<\infty$ .

Corollary 1.3. Let M be an n-dimensional $(3\leq n\leq4)$ complete noncompact hypersurface with finite index in hyperbolic space $\mathbb{H}^{n+1}$ . If $\lambda_1(M)>\frac{n\sqrt{n-1}}{2-\sqrt{n-1}}$ and $(\!\int_M H^n)^{\frac{2}{n}}<\frac{1}{S(n)}$ , where S(n) is the Sobolev constant, then $\dim H^1(L^{2}(M))<\infty$ . Moreover, M has finitely many ends.

We say that an n-dimensional complete Riemannian manifold M has property $(\mathcal{P}_\rho)$ , if a weighted Poincaré inequality is valid on M with some nonnegative weight function $\rho(x)$ , namely

(1.1) \begin{align} \int_M\rho(x) \eta^2\leq \int_M|\nabla \eta|^2, \quad \forall \eta\in C^\infty_0(M).\end{align}

Moreover, the $\rho$ -metric, defined by $ds^2_\rho=\rho ds^2_M$ is complete. In particular, if $\lambda_1(M)$ is assumed to be positive, then obviously M possesses property $(\mathcal{P}_\rho)$ with $\rho=\lambda_1(M)$ . So, the notion of property $(\mathcal{P}_\rho)$ may be viewed as a generalization of the assumption $\lambda_1(M)>0$ . Recently, Sang and Thanh [Reference Sang and Thanh25] proved that a complete noncompact stable minimal hypersurface with property ( $\mathcal{P}_\rho$ ) in Riemannian manifold N has no nontrivial $L^2$ harmonic 1-form if the sectional curvature of N satisfies $K_{N}(x)\geq -\frac{(1-\tau)\rho(x)}{(2n-1)(n-1)},0<\tau\leq 1$ and $\rho(x)$ satisfies certain growth condition. Motivated by [Reference Chao, Hui and Bai4, Reference Chao and Lv5, Reference Chao and Lv6, Reference Dung and Seo9, Reference Sang and Thanh25], we can obtain an another improvement of Theorem 1.1. More precisely, we have the following theorem.

Theorem 1.4. Let $M^n(3\leq n\leq 6)$ be a complete noncompact hypersurface with property $(\mathcal{P}_\rho)$ in an $(n+1)$ -dimensional Riemannian manifold N. Assume that $\rho$ is bounded and

\begin{equation*}0\geq K_{N}(x)\geq -\frac{(1-\tau)\rho(x)}{(2n-1)(n-1)}, \quad (\forall x\in M)\end{equation*}

for some $\tau\;:\;\frac{122-51\sqrt{5}}{12+4\sqrt{5}}<\tau\leq 1$ . If M has finite index, then $\dim H^1(L^{2p}(M))<\infty$ for any constant p satisfying $C_1(n,\tau)<p<C_2(n,\tau),$ where

\begin{align*}C_0&=\frac{(2\sqrt{n-1}+n)(1-\tau)}{(2n-1)(n-1)},\\[5pt]C_1(n,\tau)&=\frac{2\Big(1-\sqrt{1-\frac{n-2}{2\sqrt{n-1}}(1+C_0)}\Big)}{\sqrt{n-1}(1+C_0)}, \\[5pt]C_2(n,\tau)&=\frac{2\Big(1+\sqrt{1-\frac{n-2}{2\sqrt{n-1}}(1+C_0)}\Big)}{\sqrt{n-1}(1+C_0)}.\end{align*}

when $\tau=1$ , we have

Corollary 1.5. Let $M^n(3\leq n\leq 6)$ be a complete noncompact hypersurface with property $(\mathcal{P}_\rho)$ in $\mathbb{R}^{n+1}$ . If M has finite index and $\rho$ is bounded, then $\dim H^1(L^{2p}(M))<\infty$ for any constant p satisfying $C_1(n)<p<C_2(n),$ where

\begin{align*}C_1(n)&=\frac{2}{\sqrt{n-1}}\left(1-\sqrt{1-\frac{n-2}{2\sqrt{n-1}}}\;\right), \\[5pt]C_2(n)&=\frac{2}{\sqrt{n-1}}\left(1+\sqrt{1-\frac{n-2}{2\sqrt{n-1}}}\;\right).\end{align*}

Moreover, we can prove a similar finiteness theorem for $L^{p}$ harmonic 1-forms on complete noncompact hypersurfaces with property $(\mathcal{P}_\rho)$ as Theorem 1.4 except the condition that the lower bound of $K_N$ depends on $n, p,\rho$ . More precisely, we have

Theorem 1.6. Let $N^{n+1}$ be an $(n+1)$ -dimensional Riemannian manifold, and $M^n (3\leq n\leq 6)$ be a complete noncompact hypersurface satisfying weighted Poincaré inequality $(\mathcal{P}_\rho)$ for some nonnegative bounded function $\rho$ in N. If M has finite index and

\begin{equation*}0\geq K_N> -\frac{4p(n-1)-2(n-2)-(n-1)\sqrt{n-1}p^2}{p^2(n-1)(2n-2+n\sqrt{n-1})}\rho,\end{equation*}

where p satisfies

\begin{equation*}\frac{2}{\sqrt{n-1}}\left(1-\sqrt{1-\frac{n-2}{2\sqrt{n-1}}}\;\right)<p<\frac{2}{\sqrt{n-1}}\left(1+\sqrt{1-\frac{n-2}{2\sqrt{n-1}}}\;\right).\end{equation*}

Then, $\dim H^1(L^{2p}(M))<\infty$ .

2. Some lemmas

In this section, we will recall some useful results which will be adopted in the proof of main theorems. The most basic one is the following Weitzenböck formula.

Lemma 2.1 ([Reference Li18]). Given a Riemannian manifold $M^n$ , for any 1-form $\omega$ on $M^n$ , we have

\begin{equation*}\triangle |\omega|^2=2|\nabla \omega|^2+2\langle \triangle \omega,\omega\rangle+2{\rm Ric}(\omega^{\sharp},\omega^{\sharp}),\end{equation*}

where $\omega^{\sharp}$ is the dual vector field of $\omega$ .

Besides, the Kato inequality is also a fundamental technique.

Lemma 2.2 ([Reference Calderbank, Gauduchon and Herzlich1]). Given a Riemannian manifold $M^n$ , for any closed and coclosed k-form $\omega$ on $M^n$ , we have

\begin{equation*}|\nabla \omega|^2\geq (1+C_{n,k})|\nabla |\omega||^2, \quad where \quad C_{n,k}=\begin{cases}\dfrac{1}{n-k},\quad 1\leq k\leq\dfrac{n}{2}.\\[12pt] \dfrac{1}{k},\quad \dfrac{n}{2}\leq k \leq n-1.\end{cases}\end{equation*}

What’s more, Shiohama and Xu [Reference Shiohama and Xu29] proved the following estimation on the Ricci curvature of submanifold.

Lemma 2.3 ([Reference Shiohama and Xu29]). Let M be an n-dimensional complete immersed hypersurface in a Riemannian manifold N. If all the sectional curvatures of N are bounded pointwise from below by a function k, then

(2.1) \begin{align} {\rm Ric}\geq (n-1)k-\frac{n-1}{n}|A|^2+2(n-1)H^2-\frac{(n-2)\sqrt{n(n-1)}}{n}|H|\sqrt{|A|^2-nH^2},\end{align}

where H is the mean curvature and A is the second fundamental form of M.

We should note in [Reference Shiohama and Xu29], the author assumed that all the sectional curvatures of N are bounded below by a constant k. But according to his argument, this assumption was only used in the end of the proof; hence, this method can be used to prove the above lemma without any change. Under the same assumption, the following lemma estimates the right hand side of (2.1).

Lemma 2.4 ([Reference Chao and Lv6]). Let $M^n$ be an n-dimensional orientable submanifold in Riemannian manifold N. We have

(2.2) \begin{align} 2(n-1)H^2-\frac{(n-2)\sqrt{n(n-1)}}{n}|H|\sqrt{|A|^2-nH^2}\geq \frac{2(n-1)-n\sqrt{n-1}}{2n} |A|^2. \end{align}

Definition 2.5. Let $M^n$ be an n-dimensional orientable hypersurface in a Riemannian manifold N. We say M is stable if the following inequality

(2.3) \begin{align} \int_M |\nabla \eta|^2\geq\int_M\Big(|A|^2+\overline{{\rm Ric}}(u,u)\Big)\eta^2\end{align}

holds for any $\eta\in C^{\infty}_0(M)$ , where $u$ is a unit normal vector field on M, $\overline{{\rm Ric}}$ is the Ricci curvature of N, and A is the second fundamental form of M.

Now, we will give a condition to ensure that the volume of Riemannian manifold to be infinite.

Lemma 2.6 ([Reference Dung and Seo9]). Let M be a complete oriented noncompact immersed hypersurface in a complete Riemannian manifold $N^{n+1}$ with nonnegative sectional curvature. If the stability inequality (2.3) holds on M, then the volume of M is infinite.

In addition, the following Hoffman-Spruck inequality generalizes the Poincaré inequality and relates it to the Sobolev inequality.

Lemma 2.7 ([Reference Hoffman and Spruck14]). Let $x\;:\;M^n\hookrightarrow N$ be an isometric immersion of a complete manifold M in a complete simply connected manifold N with nonpositive sectional curvature. Then, the following inequality holds:

\begin{equation*}\Big(\int_M h^{2n}dV\Big)^{\frac{n-2}{n}}\leq S(n)\int_M(|\nabla h|^2+(h|H|)^2)dV,\end{equation*}

for all nonnegative $C^1$ -functions $h\;:\;M^n\rightarrow \mathbb{R}$ with compact support, where S(n) is the Sobolev constant, which is positive and only depends on n.

The following Cauchy inequality gives the $L^2$ upper bound of a nonnegative sub-eigenfunction.

Lemma 2.8 ([Reference Li18]). Let M be an n-dimensional complete noncompact Riemannian manifold. For $x \in M$ and a constant $\kappa \geq 0$ , we assume that the Ricci curvature of M satisfies

\begin{equation*}\operatorname{Ric} \geq-(n-1)\kappa\end{equation*}

on the geodesic ball $B_x(4r)$ centered at p with radius 4r. Let $0 < \delta < \frac{1}{2}$ and $\lambda > 0$ be two fixed constants. Then there exists a positive constant $C = C(r, \delta, \lambda, \kappa)$ so that if any nonnegative function $\eta \in C^{\infty}(B_x(2r))$ satisfying the differential inequality $\triangle\eta\geq-\lambda\eta$ , then

\begin{equation*}\sup_{B_x((1-\delta)r)}\eta^2\leq\frac{C}{{\rm Vol}(B_x(r))}\int_{B_x(r)}\eta^2.\end{equation*}

The last lemma associates the $L^2$ and $L^{\infty}$ norms of harmonic forms with the dimension of the space of harmonic forms.

Lemma 2.9 ([Reference Li17, Reference Pigola, Rigoli and Setti24]). Let K be a finite dimensional subspace of $L^{2p}$ harmonic q-forms on an m-dimensional complete noncompact Riemannian manifold M for any $p > 0$ . Then, there exists $\eta \in K$ such that

\begin{equation*}(\dim K)^{\min\{1,p\}}\int_{B_x(r)}|\eta|^{2p}\leq \operatorname{Vol}\!(B_x(r))\cdot\min\left\{ \left(\begin{array}{c}m\\[5pt] q \end{array}\right), \dim K\right\}^{\min\{1,p\}}\cdot\sup_{B_x(r)}|\eta|^{2p},\end{equation*}

for any $x \in M$ and $r > 0$ .

3. Proofs of the theorems

Proof of Theorem 1.2. Let $\omega$ be a $L^{2p}$ harmonic 1-form. Using the Weitzenböck formula and the Kato inequality, we can get that

(3.1) \begin{align} |\omega|\triangle|\omega|\geq \frac{1}{n-1}|\nabla |\omega||^2+{\rm Ric}(\omega^{\sharp},\omega^{\sharp}).\end{align}

Under our hypothesis on the sectional curvature of N, we can estimate the Ricci curvature of M by using Lemmas 2.3 and 2.4:

\begin{align*} {\rm Ric}_M &\geq -(n-1)k^2+\frac{2(n-1)-n\sqrt{n-1}}{2n}|A|^2-\frac{n-1}{n}|A|^2 \\[5pt]&=-(n-1)k^2-\frac{\sqrt{n-1}}{2}|A|^2.\end{align*}

Thus equation (3.1) becomes

(3.2) \begin{align} |\omega|\triangle |\omega|\geq \frac{1}{n-1}|\nabla |\omega||^2-(n-1)k^2|\omega|^2-\frac{\sqrt{n-1}}{2}|A|^2|\omega|^2.\end{align}

Furthermore, using (3.2) we have that

(3.3) \begin{align} |\omega|^p\triangle |\omega|^p &=|\omega|^p\Big(p(p-1)|\omega|^{p-2}|\nabla |\omega||^2+p |\omega|^{p-1}\triangle |\omega|\Big) \\[5pt] &=\frac{p-1}{p}|\nabla |\omega|^p|^2+p|\omega|^{2p-2}|\omega|\triangle|\omega| \\[5pt] &\geq \Big(1-\frac{n-2}{(n-1)p}\Big)|\nabla |\omega|^p|^2- \frac{p\sqrt{n-1}}{2}|A|^2|\omega|^{2p}-(n-1)k^2p|\omega|^{2p}.\end{align}

Since M has finite index, there exists a compact subset $\Omega\subset M$ such that $M\backslash\Omega$ is stable ([Reference Fischer-Colbrie10, Reference Tysk31]). Without loss of generality, we assume that $\Omega = B_x(R_0)$ . Then, according to Definition 2.5, for any compactly supported Lipschitz function $\eta$ on $M\backslash\ \!B_x(R_0)$ ,

\begin{equation*}\int_{M\backslash\ \!B_x(R_0)} |\nabla \eta|^2\geq\int_{M\backslash\ \!B_x(R_0)}\Big(|A|^2+\overline{{\rm Ric}}(u,u)\Big)\eta^2.\end{equation*}

The assumption on the sectional curvature of N implies that $\overline{{\rm Ric}}(u,u)\geq -nk^2$ and

(3.4) \begin{equation} \int_{M \backslash B_x(R_0)} |\nabla \eta|^2\geq\int_{M \backslash B_x(R_0)}\Big(|A|^2-nk^2\Big)\eta^2.\end{equation}

for all compactly supported Lipschitz function $\eta$ on $M \backslash B_x(R_0)$ . Replacing $\eta$ by $\eta |\omega|^p$ in (3.4), we get

(3.5) \begin{equation}\int_{M \backslash B_x(R_0)}|A|^2\eta^2 |\omega|^{2p}-nk^2\int_{M \backslash B_x(R_0)}\eta^2|\omega|^{2p}\leq \int_{M \backslash B_x(R_0)}|\nabla(\eta |\omega|^p)|^2.\end{equation}

Moreover, the domain monotonicity of eigenvalues implies that

\begin{equation*}\lambda_1(M)\leq\lambda_1(M \backslash B_x(R_0))\leq\frac{\int_{M \backslash B_x(R_0)}|\nabla \eta|^2}{\int_{M \backslash B_x(R_0)}\eta^2}\end{equation*}

for any compactly supported Lipschitz function $\eta$ on $M \backslash B_x(R_0)$ . Replacing $\eta$ by $\eta |\omega|^p$ in this inequality and using (3.5), we have

(3.6) \begin{equation} \int_{M \backslash B_x(R_0)}\eta^2|\omega|^{2p}\leq\frac{1}{\lambda_1(M)}\int_{M \backslash B_x(R_0)}|\nabla(\eta |\omega|^p)|^2.\end{equation}

and

(3.7) \begin{align}\int_{M \backslash B_x(R_0)}&|A|^2\eta^2 |\omega|^{2p}\leq \Big(1+\frac{nk^2}{\lambda_1(M)}\Big)\int_{M \backslash B_x(R_0)}|\nabla(\eta |\omega|^p)|^2 \\[5pt]&=\Big(1+\frac{nk^2}{\lambda_1(M)}\Big)\int_{M \backslash B_x(R_0)}\!\Big(\eta^2|\nabla|\omega|^p|^2+|\nabla\eta|^2|\omega|^{2p}+2\eta|\omega|^p\langle\nabla\eta,\nabla|\omega|^p\rangle\Big).\end{align}

Applying the divergence theorem, we get

(3.8) \begin{equation} 2\int_{M \backslash B_x(R_0)}\eta|\omega|^p\langle\nabla\eta,\nabla|\omega|^p\rangle =-\int_{M \backslash B_x(R_0)}\!\Big(\eta^2|\nabla|\omega|^p|^2+\eta^2|\omega|^p\triangle |\omega|^p\Big).\end{equation}

Therefore,

(3.9) \begin{equation}\int_{M \backslash B_x(R_0)}|A|^2\eta^2 |\omega|^{2p}\leq\Big(1+\frac{nk^2}{\lambda_1(M)}\Big)\int_{M \backslash B_x(R_0)}\Big(|\nabla\eta|^2|\omega|^{2p}-\eta^2|\omega|^p\triangle |\omega|^p\Big).\end{equation}

From (3.3) and (3.9), we have

\begin{align*}\int_{M \backslash B_x(R_0)}|A|^2\eta^2 |\omega|^{2p}&\leq \Big(1+\frac{nk^2}{\lambda_1(M)}\Big)\int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p} \\[5pt]&\;\;\;-\Big(1+\frac{nk^2}{\lambda_1(M)}\Big)\Big(1-\frac{n-2}{(n-1)p}\Big)\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2 \\[5pt]&\;\;\;+\Big(1+\frac{nk^2}{\lambda_1(M)}\Big)\int_{M \backslash B_x(R_0)}\Big(\frac{p\sqrt{n-1}}{2}|A|^2+(n-1)k^2p\Big)\eta^2|\omega|^{2p}.\end{align*}

Therefore, the assumption on $\lambda_1(M)$ implies

(3.10) \begin{align}\Big(1-\frac{n-2}{(n-1)p}\Big)&\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2 \\[5pt]&\leq \int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p}+(n-1)k^2p\int_{M \backslash B_x(R_0)}\eta^2|\omega|^{2p} \\[5pt]&\quad +\left(\frac{p\sqrt{n-1}}{2}-\frac{1}{1+\frac{nk^2}{\lambda_1(M)}}\right)\int_{M \backslash B_x(R_0)}|A|^2\eta^2|\omega|^{2p} \\[5pt]&\leq \int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p}+(n-1)k^2p\int_{M \backslash B_x(R_0)}\eta^2|\omega|^{2p}.\end{align}

On the other hand, applying Young’s inequality in (3.6), we obtain

\begin{equation*}\int_{M \backslash B_x(R_0)}\eta^2|\omega|^{2p}\leq\frac{1}{\lambda_1(M)}\cdot\frac{1+\varepsilon}{\varepsilon}\int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p}+\frac{1+\varepsilon}{\lambda_1(M)}\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2\end{equation*}

for any $\varepsilon>0$ . Combining this with (3.10), we get

\begin{align*}\Big(1-\frac{n-2}{(n-1)p}&-\frac{(n-1)k^2p(1+\varepsilon)}{\lambda_1(M)}\Big)\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2\\[5pt]&\leq\Big(1+\frac{(n-1)k^2p}{\lambda_1(M)}\cdot\frac{1+\varepsilon}{\varepsilon}\Big)\int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p}.\end{align*}

Using the assumption on $\lambda_1(M)$ , we choose a sufficiently small $\varepsilon > 0$ such that

\begin{equation*}1-\frac{n-2}{(n-1)p}-\frac{(n-1)k^2p(1+\varepsilon)}{\lambda_1(M)}>0.\end{equation*}

Then we have

(3.11) \begin{equation}\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2\leq C_1\int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p},\end{equation}

for some positive constant $C_1$ which depends only on p, n, k and $\lambda_1(M)$ . Moreover, from Lemma 2.7 and Hölder inequality, we obtain

(3.12) \begin{align}\Big(\int_{M \backslash B_x(R_0)}(\eta|\omega|^p)^{\frac{2n}{n-2}}\Big)^{\frac{n-2}{n}}&\leq S(n)\int_{M \backslash B_x(R_0)}\big(|\nabla (\eta|\omega|^p)|^2+\eta^2|\omega|^{2p}|H|^2\big) \\[5pt]&\leq 2S(n)\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2 \\[5pt]&\quad +2S(n)\int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p} \\[5pt]&\quad +S(n)\Big(\int_{M \backslash B_x(R_0)} |H|^n\Big)^{\frac{2}{n}}\Big(\int_{M \backslash B_x(R_0)} (\eta|\omega|^p)^{\frac{2n}{n-2}}\Big)^{\frac{n-2}{n}},\end{align}

i.e.

(3.13) \begin{align}\Big(1-S(n)&\|H\|^2_{L^n(M)}\Big)\Big(\int_{M \backslash B_x(R_0)} (\eta|\omega|^p)^{\frac{2n}{n-2}}\Big)^{\frac{n-2}{n}} \\[5pt]&\leq 2S(n)\int_{M \backslash B_x(R_0)}\eta^2|\nabla |\omega|^p|^2+2S(n)\int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p}.\end{align}

Combining (3.11) and (3.13) and the assumption $1-S(n)\|H\|^2_{L^n(M)}>0$ , we get

(3.14) \begin{equation}\Big(\int_{M \backslash B_x(R_0)} (\eta|\omega|^p)^{\frac{2n}{n-2}}\Big)^{\frac{n-2}{n}}\leq C_2 \int_{M \backslash B_x(R_0)}|\nabla\eta|^2|\omega|^{2p},\end{equation}

for some positive constant $C_2$ . Now we choose our test function $0 \leq \eta \leq 1$ as in [Reference Choi and Seo7]: given $R > R_0 + 1$ ,

\begin{equation*}\eta=\left\{ \begin{array}{ll} 1, & on\;B_x(R)\backslash B_x(R_0+1) \\[5pt] 0, & on\;B_x(R_0)\cup(M\backslash B_x(2R)), \end{array} \right.\end{equation*}

$|\nabla\eta|\leq C_3$ on $B_x(R_0+1)\backslash B_x(R_0)$ and $|\nabla\eta|\leq \frac{C_3}{R}$ on $B_x(2R)\backslash B_x(R)$ . Applying this test function $\eta$ to (3.14), we get

\begin{equation*}\Big(\int_{B_x(R) \backslash B_x(R_0+1)} |\omega|^{\frac{2np}{n-2}}\Big)^{\frac{n-2}{n}}\leq C_4 \int_{B_x(R_0+1) \backslash B_x(R_0)}|\omega|^{2p}+\frac{C_4}{R^2}\int_{B_x(2R) \backslash B_x(R)}|\omega|^{2p}.\end{equation*}

Letting $R\rightarrow\infty$ and using the assumption that $\displaystyle \int_M |\omega|^{2p}<\infty$ , we obtain

(3.15) \begin{equation} \Big(\int_{M \backslash B_x(R_0+1)} |\omega|^{\frac{2np}{n-2}}\Big)^{\frac{n-2}{n}}\leq C_4 \int_{B_x(R_0+1) \backslash B_x(R_0)}|\omega|^{2p}.\end{equation}

Then, using Hölder inequality and (3.15), we conclude that

(3.16) \begin{align}\int_{B_x(R_0+2) \backslash B_x(R_0+1)}|\omega|^{2p} &\leq \big({\rm Vol}(B_x(R_0+2))\big)^{\frac{2}{n}}\Big(\int_{B_x(R_0+2) \backslash B_x(R_0+1)} |\omega|^{\frac{2np}{n-2}}\Big)^{\frac{n-2}{n}} \\[5pt]&\leq C_4\cdot \big({\rm Vol}(B_x(R_0+2))\big)^{\frac{2}{n}} \int_{B_x(R_0+1) \backslash B_x(R_0)}|\omega|^{2p}.\end{align}

Adding $\displaystyle \int_{B_x(R_0+1) \backslash B_x(R_0)}|\omega|^{2p}$ to both sides of (3.16), we get

\begin{equation*} \int_{B_x(R_0+2) \backslash B_x(R_0)}|\omega|^{2p}\leq \Big(1+C_4\cdot \big({\rm Vol}(B_x(R_0+2))\big)^{\frac{2}{n}}\Big)\int_{B_x(R_0+1) \backslash B_x(R_0)}|\omega|^{2p}.\end{equation*}

Again adding $\displaystyle \int_{B_x(R_0)}|\omega|^{2p}$ to both sides infers

(3.17) \begin{equation}\int_{B_x(R_0+2)}|\omega|^{2p}\leq C_5 \int_{B_x(R_0+1)}|\omega|^{2p}.\end{equation}

On the other hand, since $|\omega|$ satisfies the differential inequality (3.3), Lemma 2.8 implies that

\begin{equation*}\sup_{B_x((1-\delta)(R_0+2))}|\omega|^{2p}\leq C_6\int_{B_x(R_0+2)}|\omega|^{2p}\end{equation*}

for some positive constant $C_6=C_6(\delta, n, k, {\rm Vol}(B_x(R_0+2)), \sup_{B_x(R_0+2)}|A|^2)$ . For a sufficiently small $\delta > 0$ such that $(1-\delta)(R_0+2) > R_0 + 1$ ,

\begin{equation*}\sup_{B_x(R_0+1)}|\omega|^{2p}\leq C_6\int_{B_x(R_0+2)}|\omega|^{2p}.\end{equation*}

Together with (3.17), we have

(3.18) \begin{equation} \sup_{B_x(R_0+1)}|\omega|^{2p}\leq C_7\int_{B_x(R_0+1)}|\omega|^{2p}.\end{equation}

for some positive constant $C_7=C_7(n,p,k,R_0,\lambda_1(M),S(n),{\rm Vol}(B_x(R_0+2)))$ . In what follows, as in [Reference Choi and Seo7], we consider any finite dimensional subspace $K\subset H^1(L^{2p}(M))$ . According to Lemma 2.9, we see that there exists an $L^{2p}$ harmonic 1-form $\omega\subset K$ such that

\begin{equation*}(\!\dim K)^{\min\{1,p\}}\int_{B_x(R_0+1)}|\omega|^{2p}\leq {\rm Vol}(B_x(R_0+1))\cdot\min\!\left\{n, \dim K\right\}^{\min\{1,p\}}\cdot\sup_{B_x(R_0+1)}|\omega|^{2p}.\end{equation*}

From (3.18), we have

\begin{equation*}\dim K\leq \Big(C_7\cdot {\rm Vol}(B_x(R_0+1))\Big)^{\frac{1}{\min\{1,p\}}}\cdot\min\!\left\{n, \dim K\right\},\end{equation*}

which implies that $\dim K$ is bounded by a fixed constant. Since K is an arbitrary subspace of finite dimension, we get that $\dim H^1(L^{2p}(M))<\infty$ .

Proof of Theorem 1.4. Let $\omega$ be a $L^{2p}$ harmonic 1-form. Using Weitzenböck formula and Kato inequality, we can get that

(3.19) \begin{align} |\omega|\triangle|\omega|\geq \frac{1}{n-1}|\nabla |\omega||^2+{\rm Ric}(\omega^{\sharp},\omega^{\sharp}).\end{align}

Under our hypothesis on the sectional curvature of N, we can estimate the Ricci curvature of M by using Lemmas 2.3 and 2.4:

\begin{align*} {\rm Ric}_M &\geq -(n-1)\frac{(1-\tau)\rho}{(2n-1)(n-1)}+(n-1)H^2-\frac{n-1}{n}|\Phi|^2-\frac{(n-2)\sqrt{n(n-1)}}{n}|H||\Phi| \\[5pt] &=-\frac{(1-\tau)\rho}{2n-1}+2(n-1)H^2-\frac{(n-2)\sqrt{n(n-1)}}{n}|H|\sqrt{|A|^2-nH^2}-\frac{n-1}{n}|A|^2 \\[5pt] &\geq -\frac{(1-\tau)\rho}{2n-1}+\frac{2(n-1)-n\sqrt{n-1}}{2n}|A|^2-\frac{n-1}{n}|A|^2 \\[5pt]&=-\frac{(1-\tau)\rho}{2n-1}-\frac{\sqrt{n-1}}{2}|A|^2.\end{align*}

Thus, equation (3.19) becomes

(3.20) \begin{align} |\omega|\triangle |\omega|\geq \frac{1}{n-1}|\nabla |\omega||^2-\frac{(1-\tau)\rho}{2n-1}|\omega|^2-\frac{\sqrt{n-1}}{2}|A|^2|\omega|^2.\end{align}

Given any $\alpha>0$ , using (3.20) we have that

(3.21) \begin{align} |\omega|^\alpha\triangle |\omega|^\alpha &=|\omega|^\alpha\Big(\alpha(\alpha-1)|\omega|^{\alpha-2}|\nabla |\omega||^2+\alpha |\omega|^{\alpha-1}\triangle |\omega|\Big) \\[5pt] &=\frac{\alpha-1}{\alpha}|\nabla |\omega|^\alpha|^2+\alpha|\omega|^{2\alpha-2}|\omega|\triangle|\omega| \\[5pt] &\geq \Big(1-\frac{n-2}{(n-1)\alpha}\Big)|\nabla |\omega|^\alpha|^2- \frac{\alpha\sqrt{n-1}}{2}|A|^2|\omega|^{2\alpha}-\frac{(1-\tau)\rho\alpha}{2n-1}|\omega|^{2\alpha}.\end{align}

Since M has finite index, as in the proof of Theorem 1.2, we assume that $M\backslash B_x(R_0)$ is stable. In other words,

(3.22) \begin{equation} \int_{M \backslash B_x(R_0)} |\nabla \eta|^2\geq\int_{M \backslash B_x(R_0)}\Big(|A|^2+\overline{{\rm Ric}}(u,u)\Big)\eta^2.\end{equation}

for all compactly supported Lipschitz function $\eta$ on $M \backslash B_x(R_0)$ . Replacing $\eta$ by $|\omega|^{(s+1)\alpha}\eta$ in (3.22) and applying the lower bound of sectional curvature of N allow us to conclude that

(3.23) \begin{align} \int_{M \backslash B_x(R_0)}& |A|^2|\omega|^{2(s+1)\alpha}\eta^2 \\[5pt]&\leq \int_{M \backslash B_x(R_0)} |\nabla (|\omega|^{(s+1)\alpha}\eta)|^2+\frac{n(1-\tau)}{(2n-1)(n-1)}\int_{M \backslash B_x(R_0)}\rho |\omega|^{2(s+1)\alpha}\eta^2 \\[5pt] &=(s+1)^2\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2+\int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2\\[5pt] &\quad+2(s+1)\int_{M \backslash B_x(R_0)} |\omega|^{(2s+1)\alpha}\eta\langle \nabla \eta,\nabla |\omega|^\alpha\rangle \\[5pt] &\quad+\frac{n(1-\tau)}{(2n-1)(n-1)}\int_{M \backslash B_x(R_0)}\rho |\omega|^{2(s+1)\alpha}\eta^2.\end{align}

On the other hand, for $s>0$ and a smooth function $\eta$ with compactly support in M, multiplying both sides of the inequality (3.21) by $|\omega|^{2s\alpha}\eta^2$ and integrating over M, we obtain that

\begin{align*} &\quad\Big(1-\frac{n-2}{(n-1)\alpha}\Big)\int_{M \backslash B_x(R_0)}|\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2 \\[5pt] &\leq\int_{M \backslash B_x(R_0)}|\omega|^{(2s+1)\alpha}\eta^2\triangle|\omega|^\alpha+ \frac{\alpha \sqrt{n-1}}{2}\int_{M \backslash B_x(R_0)}|A|^2|\omega|^{2(s+1)\alpha}\eta^2\\[5pt]&\quad+\frac{\alpha (1-\tau)}{2n-1}\int_{M \backslash B_x(R_0)}\rho|\omega|^{2(s+1)\alpha}\eta^2 \\[5pt] &=-(2s+1)\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2-2\int_{M \backslash B_x(R_0)} \eta|\omega|^{(2s+1)\alpha}\langle \nabla \eta,\nabla |\omega|^\alpha\rangle \\[5pt] &\quad+\frac{\alpha\sqrt{n-1}}{2}\int_{M \backslash B_x(R_0)}|A|^2|\omega|^{2(s+1)\alpha}\eta^2+\frac{\alpha (1-\tau)}{2n-1}\int_{M \backslash B_x(R_0)}\rho|\omega|^{2(s+1)\alpha}\eta^2,\end{align*}

i.e.

(3.24) \begin{align} &\quad\Big(2(s+1)-\frac{n-2}{(n-1)\alpha}\Big)\int_{M \backslash B_x(R_0)}|\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2 \\[5pt] &\leq-2\int_{M \backslash B_x(R_0)} \eta|\omega|^{(2s+1)\alpha}\langle \nabla \eta,\nabla |\omega|^\alpha\rangle+\frac{\alpha\sqrt{n-1}}{2}\int_{M \backslash B_x(R_0)}|A|^2|\omega|^{2(s+1)\alpha}\eta^2 \\[5pt] &\quad+\frac{\alpha (1-\tau)}{2n-1}\int_{M \backslash B_x(R_0)}\rho|\omega|^{2(s+1)\alpha}\eta^2.\end{align}

Combining (3.24) with (3.23), we obtain that

(3.25) \begin{align} &\quad \Big(2(s+1)-\frac{n-2}{(n-1)\alpha}-\frac{\alpha\sqrt{n-1}}{2}\cdot (s+1)^2\Big)\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2 \\[5pt] &\leq \frac{\alpha \sqrt{n-1}}{2}\int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2+E\int_{M \backslash B_x(R_0)} \rho |\omega|^{2(s+1)\alpha}\eta^2 \\[5pt] &\quad +\big(\alpha\sqrt{n-1}\cdot (s+1)-2\big)\int_{M \backslash B_x(R_0)}|\omega|^{(2s+1)\alpha}\eta\langle \nabla \eta,\nabla |\omega|^\alpha\rangle,\end{align}

where

\begin{equation*}E=\Big(\frac{ n\sqrt{n-1}}{2}+n-1\Big)\cdot\frac{\alpha(1-\tau)}{(2n-1)(n-1)}.\end{equation*}

From the assumption of weighted Poincaré inequality (1.1), we obtain that

(3.26) \begin{align} \int_{M \backslash B_x(R_0)} \rho (|\omega|^{2(s+1)\alpha}\eta^2)&\leq \int_{M \backslash B_x(R_0)} |\nabla (|\omega|^{(s+1)\alpha}\eta)|^2 \\[5pt] &=(s+1)^2\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2+\int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2 \\[5pt] &\quad+2(s+1)\int_{M \backslash B_x(R_0)}|\omega|^{(2s+1)\alpha}\eta\langle \nabla \eta,\nabla |\omega|^\alpha\rangle.\end{align}

Plugging (3.26) into (3.25) implies that

(3.27) \begin{align} B\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2\leq C \int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2+2D\int_{M \backslash B_x(R_0)} |\omega|^{(2s+1)\alpha}\eta\langle \nabla \eta,\nabla |\omega|^\alpha\rangle,\end{align}

where

\begin{align*} &B=2(s+1)-\frac{n-2}{(n-1)\alpha}-\frac{\alpha\sqrt{n-1}}{2}\cdot(s+1)^2-E(s+1)^2, \\[5pt] &C=\frac{\alpha \sqrt{n-1}}{2}+E, \\[5pt] &D=\frac{\alpha\sqrt{n-1}}{2}\cdot(1+s)-1+E(s+1). \end{align*}

For any $\varepsilon>0$ , using Cauchy-Schwarz inequality, we can rewrite equation (3.27) as

(3.28) \begin{align} \Big(B -|D|\varepsilon\Big)\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2\leq \Big(C+|D|\frac{1}{\varepsilon}\Big)\int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2.\end{align}

Now let $p=(s+1)\alpha$ , we see that

(3.29) \begin{align}&\quad B=2(s+1)-\frac{n-2}{(n-1)\alpha}-\frac{\alpha\sqrt{n-1}}{2}\cdot(s+1)^2-E(s+1)^2 \\[5pt]&=\frac{1}{\alpha}\Big\{2p-\frac{n-2}{n-1}-\frac{p^2\sqrt{n-1}}{2}-\left(\frac{n\sqrt{n-1}}{2}+n-1\right)\frac{(1-\tau)p^2}{(2n-1)(n-1)}\Big\} \\[5pt]&=\frac{1}{\alpha}\Big\{2p-\frac{n-2}{n-1}-\frac{\sqrt{n-1}}{2}\Big[1+\Big(n+2\sqrt{n-1}\Big)\frac{(1-\tau)}{(2n-1)(n-1)}\Big]p^2\Big\}.\end{align}

Let

\begin{equation*} f(p)=-\frac{\sqrt{n-1}}{2}\Big[1+\Big(n+2\sqrt{n-1}\Big)\frac{(1-\tau)}{(2n-1)(n-1)}\Big]p^2+2p-\frac{n-2}{n-1},\end{equation*}

then the discriminant of f(p) is

(3.30) \begin{align}\Delta=4\Big(1-\frac{n-2}{2\sqrt{n-1}}\Big[1+\frac{(n+2\sqrt{n-1})(1-\tau)}{(2n-1)(n-1)}\Big]\Big)>0\end{align}

when $2\leq n\leq 6$ and $\frac{122-51\sqrt{5}}{12+4\sqrt5}< \tau\leq 1$ . Consequently, the condition $C_1<p<C_2$ allows us to conclude that $f(p)>0$ , or equivalently $B>0$ . Therefore, for a sufficiently small $\varepsilon>0$ , we have $B -|D|\varepsilon>0.$ Then, the inequality (3.28) becomes

(3.31) \begin{equation} \int_{M \backslash B_x(R_0)} |\nabla |\omega|^p|^2\leq C_0 \int_{M \backslash B_x(R_0)} |\omega|^{2p}\end{equation}

for some positive constant $C_0=C_0(n,p,\tau)$ . Then following the same method as in Theorem 1.2, we can obtain $\dim H^1(L^{2p}(M))<\infty$ .

Remark 3.1. If we assume further that $index(M)=0$ (i.e. M is stable) in Theorem 1.4, then $H^1(L^{2p}(M))$ is trivial [Reference Chao and Lv6].

Proof of Theorem 1.6. Let $K_N\geq -k\rho$ , where $k<\frac{4p(n-1)-2(n-2)-(n-1)\sqrt{n-1}p^2}{p^2(n-1)(2n-2+n\sqrt{n-1})}$ . Similarly as in the proof of Theorem 1.4, we can obtain that

\begin{align*} \widetilde{B}\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2&\leq \widetilde{C} \int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2\\[5pt]&\quad+2\widetilde{D}\int_{M \backslash B_x(R_0)} |\omega|^{(2s+1)\alpha}\eta\langle \nabla \eta,\nabla |\omega|^\alpha\rangle\end{align*}

for any compactly supported nonconstant Lipschitz function $\eta$ on $M \backslash B_x(R_0)$ , where

\begin{align*} &\widetilde{B}=2(s+1)-\frac{n-2}{(n-1)\alpha}-\frac{\alpha\sqrt{n-1}}{2}\cdot(s+1)^2-\widetilde{E}(s+1)^2, \\[5pt] &\widetilde{C}=\frac{\alpha \sqrt{n-1}}{2}+\widetilde{E}, \\[5pt] &\widetilde{D}=\frac{\alpha\sqrt{n-1}}{2}\cdot(s+1)-1+\widetilde{E}(s+1),\\[5pt] &\widetilde{E}=\Big(\frac{n\sqrt{n-1}}{2}+n-1\Big)k\alpha.\end{align*}

For any $\varepsilon>0$ , applying Cauchy-Schwarz inequality, we have that

\begin{equation*}\Big(\widetilde{B}-|\widetilde{D}|\varepsilon\Big)\int_{M \backslash B_x(R_0)} |\omega|^{2s\alpha}|\nabla |\omega|^\alpha|^2\eta^2\leq \Big(\widetilde{C}+|\widetilde{D}|\frac{1}{\varepsilon}\Big) \int_{M \backslash B_x(R_0)} |\omega|^{2(s+1)\alpha}|\nabla \eta|^2.\end{equation*}

Let $p=(s+1)\alpha,$ then we have

\begin{align*} \widetilde{B}=\frac{1}{\alpha}\Big\{2p-\frac{n-2}{n-1}-\frac{\sqrt{n-1}}{2}p^2-\Big(\frac{n\sqrt{n-1}}{2}+n-1\Big)kp^2\Big\}.\end{align*}

Let $\widetilde{f}(p)=-(n-1)\sqrt{n-1}p^2+4(n-1)p-2(n-2)$ , then the discriminant of $\widetilde{f}(p)$ is

\begin{align*} \Delta=16(n-1)^2\Big(1-\frac{n-2}{2\sqrt{n-1}}\Big)>0,\end{align*}

which is satisfied when $3\leq n\leq 6$ . Thus from the assumption on p, we see that $\widetilde{f}(p)>0$ . Moreover, the condition $k<\frac{4p(n-1)-2(n-2)-(n-1)\sqrt{n-1}p^2}{p^2(n-1)(2n-2+n\sqrt{n-1})}$ allow us to conclude that

\begin{align*} \widetilde{B}&=\frac{1}{\alpha}\Big\{2p-\frac{n-2}{n-1}-\frac{p^2\sqrt{n-1}}{2}-\Big(\frac{n\sqrt{n-1}}{2}+n-1\Big)kp^2\Big\} \\[5pt] &=\frac{1}{\alpha}\Big\{\frac{4(n-1)p-2(n-2)-(n-1)\sqrt{n-1}p^2}{2(n-1)}-\Big(\frac{n\sqrt{n-1}}{2}+n-1\Big)kp^2\Big\} \\[5pt] &=\frac{1}{\alpha}\Big\{\frac{\widetilde{f}(p)}{2(n-1)}-\Big(\frac{n\sqrt{n-1}}{2}+n-1\Big)kp^2\Big\}>0.\end{align*}

Therefore, for a sufficiently small $\varepsilon>0$ , we have $\widetilde{B}-|\widetilde{D}|\varepsilon>0$ . Using same argument as before, we can complete the proof of Theorem 1.6.

Acknowledgements

The first author is supported by the Natural Science Foundation of Jiangsu Province (No.BK20161412), and the second author is supported by the Natural Science Foundation of Jiangsu Province (No.BK20160661) and the National Natural Science Foundation of China No.12001099.

References

Calderbank, D. M., Gauduchon, P. and Herzlich, M., Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214255.CrossRefGoogle Scholar
Carron, G., $L^2$ -Cohomologie et inégalités de Sobolev, Math. Ann. 314 (1999), 613639.CrossRefGoogle Scholar
Cavalcante, M. P., Mirandola, H. and Vitório, F., $L^2$ harmonic 1-form on submanifolds with finite total curvature, J. Geom. Anal. 24 (2014), 205222.Google Scholar
Chao, X. L., Hui, A. Y. and Bai, M. M., Vanishing theorems for p-harmonic $\ell$ -forms on Riemannian manifolds with a weighted Poincare inequality, Diff. Geom. Appl. 76 (2021), 101741.CrossRefGoogle Scholar
Chao, X. L. and Lv, Y. S., $L^2$ harmonic 1-form on submanifold with weighted Póincare inequality, J. Korean Math. Soc. 53 (2016), 583595.CrossRefGoogle Scholar
Chao, X. L. and Lv, Y. S., $L^p$ harmonic 1-form on submanifold with weighted Póincare inequality, Czech. Math. J. 68 (2018), 195217.Google Scholar
Choi, H. and Seo, K., $L^p$ harmonic 1-form on minimal hypersurfaces with finite index, J. Geom. Phys. 129 (2018), 125132.Google Scholar
Dung, N. T. and Seo, K., Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature, Ann. Global Anal. Geom. 41 (2012), 447460.CrossRefGoogle Scholar
Dung, N. T. and Seo, K., Vanishing theorems for $L^2$ harmonic 1-forms on complete submanifolds in a Riemannian manifold, J. Math. Anal. Appl. 423 (2015), 15941609.CrossRefGoogle Scholar
Fischer-Colbrie, D., On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), 121132.CrossRefGoogle Scholar
Fu, H. P. and Li, Z. Q., $L^2$ harmonic 1-forms on complete submanifolds in Euclidean space, Kodai Math. J. 32 (2009), 432441.CrossRefGoogle Scholar
Greene, R. E. and Wu, H., Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math. 27 (1974), 265298.10.1007/BF01425500CrossRefGoogle Scholar
Greene, R. E. and Wu, H., Harmonic forms on noncompact Riemannian and Kähler manifolds, Michigan Math. J. 28 (1981), 6381.CrossRefGoogle Scholar
Hoffman, D. and Spruck, J., Sobolev and isoperimetric inequalities for Riemannian submanifolds, Commun. Pure Appl. Math. 27 (1974), 715727.10.1002/cpa.3160270601CrossRefGoogle Scholar
Kawai, S., Operator $\triangle-aK$ on surfaces, Hokkaido Math. J. 17 (1988), 147150.Google Scholar
Lam, K. H., Results on a weighted Poincaré inequality of complete manifolds, Trans. Am. Math. Soc. 362 (2010), 50435062.CrossRefGoogle Scholar
Li, P., On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. école Norm. Sup. 13 (1980), 451–468.10.24033/asens.1392CrossRefGoogle Scholar
Li, P., Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134 (Cambridge University Press, Cambridge, 2012), x+406 pp.Google Scholar
Li, P. and Schoen, R., $L^p$ and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984), 279301.CrossRefGoogle Scholar
Li, P. and Wang, J., Complete manifolds with positive spectrum, J. Differential. Geom. 58 (2001), 501534.CrossRefGoogle Scholar
Matheus, V., Vanishing theorems for $L^2$ harmonic forms on complete Riemannian manifolds, arXiv:1407.0236v1.Google Scholar
Miyaoka, R., $L^2$ harmonic 1-forms on a complete stable minimal hypersurface, in Geometry Global Analysis. (Tohoku University, Sendai, 1993), 289293.Google Scholar
Palmer, B., Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), 185188.CrossRefGoogle Scholar
Pigola, S., Rigoli, M. and Setti, A. G., Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique, in Progress in Mathematics, vol. 266 (Birkh $\ddot{a}$ user Verlag, Basel, 2008).Google Scholar
Sang, N. N. and Thanh, N. T., Stability minimal hypersurfaces with weighted Poincaré inequality in a Riemannian manifold, Commum. Korean. Math. Soc. 29 (2014), 123130.Google Scholar
Seo, K., $L^p$ harmonic 1-forms and first eigenvalue of a stable minimal hypersurface, Paci. J. Math. 268 (2014), 205229.Google Scholar
Seo, K., Rigidity of minimal submanifolds in hyperbolic space, Arch. Math. 94 (2010), 173181.CrossRefGoogle Scholar
Seo, K., $L^2$ harmonic 1-forms on minimal submanifolds in hyperbolic space, J. Math. Anal. Appl. 371 (2010), 546551.CrossRefGoogle Scholar
Shiohama, K. and Xu, H., The topological sphere theorem for complete submanifolds, Compos. Math. 107 (1997), 221232.CrossRefGoogle Scholar
Tam, L. F. and Zhou, D., Stability properties for the higher dimensional catenoid in $\mathbb{R}^{n+1}$ , Proc. Am. Math. Soc. 137 (2009), 34513461.CrossRefGoogle Scholar
Tysk, J., Finiteness of index and total scalar curvature for minimal hypersurfaces, Proc. Am. Math. Soc. 105(2) (1989), 429435.CrossRefGoogle Scholar
Wang, P., Chao, X., Wu, Y. and Lv, Y., Harmonic p-forms on Hadamard manifolds with finite total curvature, Ann. Glob. Anal. Geom. 54 (2018), 473487.10.1007/s10455-018-9609-1CrossRefGoogle Scholar
Yau, S. T., Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659670.CrossRefGoogle Scholar
Yun, G., Total scalar curvature and $L^2$ harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata. 89 (2002), 135141.CrossRefGoogle Scholar