Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T06:07:43.833Z Has data issue: false hasContentIssue false

Periodic solutions of four-order degenerate differential equations with finite delay in vector-valued function spaces

Published online by Cambridge University Press:  14 September 2023

Shangquan Bu
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China ([email protected])
Gang Cai*
Affiliation:
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China ([email protected])
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we mainly investigate the well-posedness of the four-order degenerate differential equation ($P_4$): $(Mu)''''(t) + \alpha (Lu)'''(t) + (Lu)''(t)$ $=\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t),\,( t\in [0,\,2\pi ])$ in periodic Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$ and periodic Besov spaces $B_{p,q}^s\;(\mathbb {T}; X)$, where $A$, $B$, $L$ and $M$ are closed linear operators on a Banach space $X$ such that $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\beta,\,\gamma \in \mathbb {C}$, $G$ and $F$ are bounded linear operators from $L^p([-2\pi,\,0];X)$ (respectively $B_{p,q}^s([-2\pi,\,0];X)$) into $X$, $u_t(\cdot ) = u(t+\cdot )$ and $u'_t(\cdot ) = u'(t+\cdot )$ are defined on $[-2\pi,\,0]$ for $t\in [0,\, 2\pi ]$. We completely characterize the well-posedness of ($P_4$) in the above two function spaces by using known operator-valued Fourier multiplier theorems.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction

The characterizations of the well-posedness for abstract degenerate differential equations with periodic initial conditions have been studied extensively in the last years. See e.g. [Reference Arendt and Bu5Reference Conejero, Lizama, Murillo-Arcila and Seoane-Sepulveda11], [Reference Kaltenbacher, Lasiecka and Pospieszalska14Reference Ponce20] and the references therein. For examples, Lizama and Ponce [Reference Lizama and Ponce16] considered the first-order degenerate equation:

(1.1)\begin{equation} (Mu)'(t)=Au(t)+f(t),\quad (t\in \mathbb{T}:=[0,2\pi]), \end{equation}

they gave necessary and sufficient conditions to guarantee the well-posedness of (1.1) in Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$, periodic Besov spaces $B_{p,q}^s(\mathbb {T}; X)$ and periodic Triebel–Lizorkin spaces $F_{p,q}^s(\mathbb {T}; X)$ under some appropriate assumptions on the modified resolvent operator determined by (1.1). Moreover, they also investigated the first-order degenerate equation with infinite delay [Reference Lizama and Ponce17]:

(1.2)\begin{equation} (Mu)'(t)=\alpha Au(t)+\int_{-\infty}^t a(t-s)Au(s){\rm d}s+f(t),\quad (t\in \mathbb{T}), \end{equation}

where $A$ and $M$ are closed linear operators defined on a Banach space $X$ with $D(A)\subseteq D(M)$, $a\in L^1(\mathbb {R}_+)$ is a scalar-valued kernel, $\alpha \in \mathbb {R}\backslash \left \{0\right \}$ and $f$ an $X$-valued function defined on $\mathbb {T}$.

Bu [Reference Bu9] considered a new second-order degenerate equation and gave necessary or sufficient conditions for this equation to be $L^p$-well-posed (respectively $B_{p,q}^s$-well-posed and $F_{p,q}^s$-well-posed), which recover some known results presented in [Reference Arendt and Bu5, Reference Arendt and Bu6, Reference Bu and Kim10] in the simpler case $M=I_X$. We notice that third-order differential equations also describe some kinds of models arising from natural phenomena, such as flexible space structures with internal damping, the well-posedness of third-order differential equations has been investigated extensively by many authors. See [Reference Aparicio and Keyantuo1Reference Aparicio and Keyantuo3, Reference Bose and Gorain7, Reference Bose and Gorain8, Reference Gorain13, Reference Kaltenbacher, Lasiecka and Pospieszalska14, Reference Poblete and Pozo19] for more information and references therein. For example, Poblete and Pozo [Reference Poblete and Pozo19] studied the well-posedness for the abstract third-order equation:

(1.3)\begin{equation} \alpha u'''(t)+u''(t)=\beta Au(t)+\gamma Bu'(t)+f(t),\ (t\in \mathbb{T}), \end{equation}

where $A$ and $B$ are closed linear operators defined on a Banach space $X$ with $D(A)\cap D(B)\neq \emptyset$, the constants $\alpha,\,\beta,\,\gamma \in \mathbb {R}^+$ and $f$ belong to either the Lebesgue–Bochner spaces, or periodic Besov spaces, or periodic Triebel–Lizorkin spaces. They give necessary and sufficient conditions for (1.3) to be $L^p$-well-posed (respectively $B_{p,q}^s$-well-posed and $F_{p,q}^s$-well-posed) by using vector-valued Fourier theorems in the vector-valued function spaces.

In this paper, we study the following four-order degenerate differential equation:

(P 4)\begin{align*} & (Mu)''''(t) + \alpha(Lu)'''(t) + (Lu)''(t)\nonumber\\ & \quad =\beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t),\quad (t\in \mathbb{T}), \end{align*}

where $A$, $B$, $L$ and $M$ are closed linear operators on a Banach space $X$ such that $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\beta,\,\gamma \in \mathbb {C}$, $G$ and $F$ are bounded linear operators from $L^p([-2\pi,\,0];X)$ (respectively $B_{p,q}^s([-2\pi,\,0];X)$) into $X$, $u_t(\cdot ) = u(t+\cdot )$ and $u'_t(\cdot ) = u'(\cdot +t)$ are defined on $[-2\pi,\,0]$ for $t\in [0,\, 2\pi ]$.

Let $f\in L^p(\mathbb {T}; X)$ be given, a function $u\in W_{\text {per}}^{1,p}(\mathbb {T}; X)\cap L^p(\mathbb {T}; D(A))$ is called a strong $L^p$-solution of ($P_4$), if $Mu\in W_{\text {per}}^{4,p}(\mathbb {T}; X),\,Lu\in W_{\text {per}}^{3,p}(\mathbb {T}; X),\,\ u'\in L^p(\mathbb {T}; D(B))$ and ($P_4$) is satisfied a.e. on $\mathbb {T}$, here we consider $D(A)$ and $D(B)$ as Banach spaces equipped with the graph norms. We say that ($P_4$) is $L^p$-well-posed, if for each $f\in L^p(\mathbb {T}; X)$, there exists a unique strong $L^p$-solution of ($P_4$). We introduce similarly the $B_{p,q}^s$-well-posedness of ($P_4$).

The main purpose of this paper is to give some characterizations of the well-posedness of ($P_4$) in Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$ and periodic Besov spaces $B_{p,q}^s(\mathbb {T}; X)$. The characterizations of the well-posedness of ($P_4$) involve the Rademacher boundedness (or norm boundedness) of the $M$-resolvent of $A$, $B$ and $L$ defined by ($P_4$). More precisely, we show that when $X$ is a UMD Banach space and $1 < p < \infty$, if $\{k(G_{k+1}-G_{k}):\ k\in \mathbb {Z}\}$ is Rademacher-bounded, then ($P_4$) is $L^p$-well-posed if and only if $\rho _{M}(A,\,B,\,L) = \mathbb {Z}$ (the $M$-resolvent set of $A$, $B$ and $L$ defined by ($P_4$)) and the sets

\[ \{k^4MN_k:\ k\in \mathbb{Z}\},\quad \{k^3LN_k:\ k\in \mathbb{Z}\}, \quad \{kBN_k:\ k\in \mathbb{Z}\}, \quad \{kN_k:\ k\in \mathbb{Z}\} \]

are Rademacher-bounded, where

\[ N_k=[(k^4M -(i\alpha k^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1}, \]

$G_k,\, F_k,\,H_k \in \mathcal {L} (X)$ are defined by $G_k x = G(e_kx)$, $F_k x = F(e_kx)$, $x\in X$. Since this characterization of the $L^p$-well-posedness of ($P_4$) does not depend on the space parameter $1 < p < \infty$, we deduce that when $X$ is a UMD Banach space and the set $\{k(G_{k+1}-G_{k}):\ k\in \mathbb {Z}\}$ is Rademacher-bounded, then ($P_4$) is $L^p$-well-posed for some $1 < p < \infty$ if and only if it is $L^p$-well-posed for all $1 < p < \infty$.

We also give a similar characterization for the $B_{p,q}^s$-well-posedness of ($P_4$): let $X$ be a Banach space, $1\leq p,\,q\leq \infty,\,\ s>0$, assume that the sets $\{k(F_{k+2}-2F_{k+1}+F_k):\ k\in \mathbb {Z}\}$, $\{k(G_{k+1}-G_{k}):\ k\in \mathbb {Z}\}$ and $\{k^2(G_{k+2}-2G_{k+1}+G_k):\ k\in \mathbb {Z}\}$ are norm-bounded, then the problem ($P_4$) is $B_{p,q}^s$-well-posed if and only if $\subset \rho _{M}(A,\,B,\,L) = \mathbb {Z}$ and the sets

\[ \{k^4MN_k:\ k\in \mathbb{Z}\},\quad \{k^3LN_k:\ k\in \mathbb{Z}\},\quad \{kBN_k:\ k\in \mathbb{Z}\}, \quad \{kN_k:\ k\in \mathbb{Z}\} \]

are norm-bounded, where $N_k,\, \ F_k,\,\ G_k$ and $H_k$ are defined as in the $L^p$-well-posedness case. Since this characterization of the $B_{p,q}^s$-well-posedness of ($P_4$) does not depend on the parameters $1\leq p,\,q\leq \infty,\,\ s>0$, we deduce that when the sets $\{k(F_{k+2}-2F_{k+1}+F_k):\ k\in \mathbb {Z}\}$, $\{k(G_{k+1}-G_{k}): k\in \mathbb {Z}\}$ and $\{k^2(G_{k+2}-2G_{k+1}+G_k):\ k\in \mathbb {Z}\}$ are norm-bounded, then ($P_4$) is $B_{p,q}^s$-well-posed for some $1\leq p,\,q\leq \infty,\,\ s>0$ if and only if it is $B_{p,q}^s$-well-posed for all $1\leq p,\,q\leq \infty,\,\ s>0$.

Our main tools in the investigation of the well-posedness of ($P_4$) are the operator-valued Fourier multiplier theorems obtained by Arendt and Bu [Reference Arendt and Bu5, Reference Arendt and Bu6] on $L^p(\mathbb {T}; X)$ and $B_{p,q}^s(\mathbb {T}; X)$. In fact, our main idea is to transform the well-posedness of ($P_4$) to an operator-valued Fourier multiplier problem in the corresponding vector-valued function space.

This work is organized as follows: in § $2$, we study the well-posedness of ($P_4$) in vector-valued Lebesgue–Bochner spaces $L^p(\mathbb {T}; X)$. In § $3$, we consider the well-posedness of ($P_4$) in periodic Besov spaces $B_{p,q}^s(\mathbb {T}; X)$. In the last section, we give some examples of degenerate differential equations with finite delay to which our abstract results may be applied.

2. Well-posedness of ($P_4$) in Lebesgue–Bochner spaces

Let $X$ and $Y$ be complex Banach spaces and let $\mathbb {T}:=[0,\,2\pi ]$. We denote by $\mathcal {L}(X,\,Y)$ the space of all bounded linear operators from $X$ to $Y$. If $X=Y$, we will simply denote it by $\mathcal {L}(X)$. For $1\leq p<\infty$, we denote by $L^p(\mathbb {T}; X)$ the space of all equivalent class of $X$-valued measurable functions $f$ defined on $\mathbb {T}$ satisfying

\begin{align*} \left\Vert f\right\Vert_{L^p}:=\Bigg(\frac{1}{2\pi}\int_0^{2\pi}\left\Vert f(t)\right\Vert^p \,{\rm d}t\Big)^{1/p}<\infty. \end{align*}

For $f\in L^1(\mathbb {T}; X)$, the $k$-th Fourier coefficient of $f$ is defined by

\begin{align*} \hat{f}(k):=\frac{1}{2\pi}\int_{0}^{2\pi}e_{{-}k}(t)f(t)\,{\rm d}t, \end{align*}

where $k\in \mathbb {Z}$ and $e_k(t)=e^{ikt}$ when $t\in \mathbb {T}$.

Definition 2.1 Let $X$ and $Y$ be complex Banach spaces and $1\leq p<\infty$, we say that $(M_k)_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$ is an $L^p$-Fourier multiplier, if for each $f\in L^p(\mathbb {T}; X)$, there exists a unique $u\in L^p(\mathbb {T}; Y)$ such that $\hat {u}(k)=M_k\hat {f}(k)$ when $k\in \mathbb {Z}$.

From the closed graph theorem, if $(M_k)_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$ is an $L^p$-Fourier multiplier, then there exists a unique bounded linear operator $T\in \mathcal {L}(L^p(\mathbb {T}; X),\, L^p(\mathbb {T}; Y))$ satisfying $(Tf)^\wedge (k) = M_k\hat f(k)$ when $f\in L^p(\mathbb {T}; X)$ and $k\in \mathbb {Z}$. The operator-valued Fourier multiplier theorem on $L^p(\mathbb {T}; X)$ obtained in [Reference Arendt and Bu5] involves the Rademacher boundedness for sets of bounded linear operators. Let $\gamma _j$ be the $j$-th Rademacher function on $[0,\,1]$ defined by $\gamma _j(t)=\rm {sgn}(\sin (2^{j-1}t))$ when $j\geq 1$. For $x\in X$, we denote by $\gamma _j\otimes x$ the vector-valued function $t\rightarrow r_j(t)x$ on $[0,\,1]$.

Definition 2.2 Let $X$ and $Y$ be Banach spaces. A set ${\bf {T}}\subset \mathcal {L}(X,\,Y)$ is said to be Rademacher-bounded (R-bounded, in short), if there exists $C>0$ such that

\[ \left\Vert \sum_{j=1}^n\gamma_j\otimes T_jx_j\right\Vert_{L^1([0,1];Y)}\leq C \left\Vert \sum_{j=1}^n\gamma_j\otimes x_j\right\Vert_{L^1([0,1];X)} \]

for all $T_1,\,\ldots,\,T_n\in {\bf {T}},\,x_1,\,\ldots,\,x_n\in X$ and $n\in \mathbb {N}$.

Remark 2.3

  1. (i) Let ${\bf {S}},\,{\bf {T}}\subset \mathcal {L}(X)$ be $R$-bounded sets. Then it can be shown easily from the definition that ${\bf {ST}}:=\left \{ST:S\in {\bf {S}},\, T\in {\bf {T}}\right \}$ and ${\bf {S}}+{\bf {T}}:=\left \{S+T:S\in {\bf {S}},\, T\in {\bf {T}}\right \}$ are still $R$-bounded.

  2. (ii) Let $X$ be a $\rm {UMD}$ Banach space and let $M_k=m_kI_X$ with $m_k\in \mathbb {C}$, where $I_X$ is the identity operator on $X$, if $\sup _{k\in \mathbb {Z}}\left \vert m_k\right \vert < \infty$ and $\sup _{k\in \mathbb {Z}}\left \vert k(m_{k+1}-m_k)\right \vert <\infty$, then $(M_k)_{k\in \mathbb {Z}}$ is an $L^p$-Fourier multiplier whenever $1 < p < \infty$ [Reference Arendt and Bu5].

The main tool in our study of $L^p$-well-posedness of ($P_4$) is the $L^p$-Fourier multiplier theorem established in [Reference Arendt and Bu5]. The following results will be very important in the proof of our main result of this section. For the concept of UMD Banach spaces, we refer the readers to [Reference Arendt and Bu5] and references therein.

Theorem 2.4 [Reference Arendt and Bu5, Theorem 1.3]

Let $X,\,Y$ be UMD Banach spaces and $(M_k)_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$. If the sets $\{M_k:\ k\in \mathbb {Z}\}$ and $\{k(M_{k+1}-M_k): \ k\in \mathbb {Z}\}$ are $R$-bounded, then $(M_k)_{k\in \mathbb {Z}}$ defines an $L^p$-Fourier multiplier whenever $1< p<\infty$.

Proposition 2.5 [Reference Arendt and Bu5, Proposition 1.11]

Let $X,\,\ Y$ be Banach spaces, $1\leq p < \infty$, and let $(M_k)_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$ be an $L^p$-Fourier multiplier, then the set $\{M_k:\ k\in \mathbb {Z}\}$ is $R$-bounded.

Now we consider the following four-order degenerate differential equations with finite delays:

(P 4)\begin{align*} & (Mu)''''(t) + \alpha(Lu)'''(t) + (Lu)''(t)\\ & \quad = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t), \quad (t\in\mathbb{T}) \end{align*}

where $A,\, B,\, M$ and $L$ are closed linear operators on a Banach space $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$, $\alpha,\,\beta,\,\gamma \in \mathbb {C}$ are given and $F,\,G:L^p([-2\pi,\,0];X)\rightarrow X$ are bounded linear operators ($F$ and $G$ are known as the delay operators). Moreover, for fixed $t\in \mathbb {T}$, the functions $u_t$ and $u'_t$ are elements in $L^p([-2\pi,\,0];X)$ defined by $u_t(s)=u(t+s),\, \ u'_t(s) = u'(t+s)$ for $-2\pi \leq s\leq 0$, here we identify a function $u$ on $\mathbb {T}$ with its natural $2\pi$-periodic extension on $\mathbb {R}$.

Let $F,\,G\in \mathcal {L}((L^p[-2\pi,\,0];X),\,X)$ and $k\in \mathbb {Z}$. We define the linear operators $F_k,\,G_k\in \mathcal {L}(X)$ by

(2.1)\begin{equation} F_kx := F(e_kx), \quad G_kx := G(e_k x), \end{equation}

for $x\in X$, where $e_k(t) = e^{ikt}$ when $t\in \mathbb {T}$. It is clear that $\left \Vert F_k\right \Vert \leq \left \Vert F\right \Vert$ and $\left \Vert G_k\right \Vert \leq \left \Vert G\right \Vert$ as $\left \Vert e_k\right \Vert _p = 1$. It is easy to see that when $u\in L^p(\mathbb {T}; X)$, then

(2.2)\begin{equation} \widehat{Fu_.}(k) = F_k\hat u(k), \quad \widehat{Gu_.}(k) = G_k\hat u(k) \end{equation}

for $k\in \mathbb {Z}$. This implies that $(F_k)_{k\in \mathbb {Z}}$ and $(G_k)_{k\in \mathbb {Z}}$ are $L^p$-Fourier multipliers as

\[ \Vert Fu_t\Vert \leq \Vert F \Vert \Vert u_.\Vert_{L^p([{-}2\pi, 0]; X)} = \Vert F \Vert \Vert u\Vert_{L^p}, \]

and

\[ \Vert Gu_t\Vert \leq \Vert G \Vert \Vert u_.\Vert_{L^p([{-}2\pi, 0]; X)} = \Vert G \Vert \Vert u\Vert_{L^p}, \]

for $t\in \mathbb {T}$ so that $Fu_\cdot,\,\ Gu_\cdot,\,\ Hu_\cdot \in L^p(\mathbb {T}; X)$.

Now we define the resolvent set of ($P_4$) by

\begin{align*} & \rho_{M}(A,B,L):= \big\{k\in\mathbb{Z}: k^4M - (\alpha ik^3+k^2)L\\ & \qquad - \beta A - i\gamma kB - ikG_k - F_k\text{ is invertible from }\\ & D(A)\cap D(B) \text{ onto }X \quad\text{and}\quad [k^4M - (\alpha ik^3+k^2)L - \beta A\\& \qquad - i\gamma kB - ikG_k - F_k]^{{-}1} \in \mathcal{L}(X) \big\}. \end{align*}

For the sake of simplicity, when $k\in \rho _{M}(A,\,B,\,L)$, we will use the following notation:

(2.3)\begin{equation} N_k=[a_kM - b_kL - \beta A - c_kB - ikG_k - F_k]^{{-}1}, \quad (k\in\mathbb{Z}), \end{equation}

where

(2.4)\begin{equation} a_k=k^4, \quad b_k=\alpha ik^3+k^2, \quad c_k=i\gamma k, \quad (k\in\mathbb{Z}). \end{equation}

If $k\in \rho _{M}(A,\,B,\,L)$, then $MN_k,\,\ LN_k,\,\ AN_k$ and $BN_k$ make sense as $D(A)\cap D(B)\subset D(M)\cap D(L)$ by assumption, and they belong to $\mathcal {L}(X)$ by the closed graph theorem and the closedness of $A,\,\ B,\,\ M$ and $L$.

Let $(L_k)_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$ be a given sequence of operators. We define

\[ (\triangle^0L)_k=L_k, \quad (\triangle L)_k=L_{k+1}-L_k, \quad (k\in\mathbb{Z}) \]

and for $n=2,\,3,\,\ldots,$ set

\[ (\triangle^nL)_k=\triangle (\triangle^{n-1}L)_k, \quad (k\in\mathbb{Z}). \]

Definition 2.6 A sequence $(d_k)_{k\in \mathbb {Z}}\subseteq \mathbb {C}\backslash \left \{0\right \}$ is called $1$-regular if the sequence $(k\frac {\triangle ^1d_k}{d_k})_{k\in \mathbb {Z}}$ is bounded; it is called $2$-regular if it is $1$-regular and the sequence $(k^2\frac {\triangle ^2d_k}{d_k})_{k\in \mathbb {Z}}$ is bounded; it is called $3$-regular if it is $2$-regular and the sequence $(k^3\frac {\triangle ^3d_k}{d_k})_{k\in \mathbb {Z}}$ is bounded.

Remark 2.7 It is easy to see that $(a_k)_{k\in \mathbb {N}}$, $(b_k)_{k\in \mathbb {N}}$ and $(c_k)_{k\in \mathbb {N}}$ are $3$-regular.

Definition 2.8 Let $1\leq p<\infty$, $n\geq 1$ be an integer and let $X$ be a Banach space, we define the the following vector-valued function spaces:

\begin{align*} W_{\text{per}}^{n,p}(\mathbb{T}; X)& :=\big\{u\in L^p(\mathbb{T}; X):\text{ there exists }v\in L^p(\mathbb{T}; X),\text{such that }\hat{v}(k)\\& =(ik)^n\hat{u}(k) \text{ for all } k\in \mathbb{Z}\big\}. \end{align*}

$W_{\text {per}}^{n,p}(\mathbb {T}; X)$ is the $n$-th $X$-valued periodic Sobolev space.

Remark 2.9 We have the following two useful properties concerning these spaces:

  1. (i) Let $m,\,n\in \mathbb {N}$. If $n\leq m$, then $W_{\text {per}}^{m,p}(\mathbb {T}; X)\subseteq W_{\text {per}}^{n,p}(\mathbb {T}; X)$.

  2. (ii) If $u\in W_{\text {per}}^{n,p}(\mathbb {T}; X)$, then for any $0\leq k\leq n-1$, we have $u^{(k)}(0)=u^{(k)}(2\pi )$.

Let $1\leq p<\infty$, we define the solution space of the $L^p$-well-posedness of ($P_4$) by

\begin{align*} & S_p(A,B,M,L):=\big\{u\in W_{\text{per}}^{1,p}(\mathbb{T}; X)\cap L^p(\mathbb{T}; D(A)): Mu\in W_{\text{per}}^{4,p}(\mathbb{T}; X), \\ & Lu\in W_{\text{per}}^{3,p}(\mathbb{T}; X), \ u'\in L^p(\mathbb{T}; D(B))\big\}, \end{align*}

here we consider $D(A)$ and $D(B)$ as Banach spaces equipped with their graph norms. The space $S_p(A,\,B,\,M,\,L)$ is complete equipped with the norm

\begin{align*} \left\Vert u\right\Vert_{S_p(A,B,M,L)}& :=\left\Vert u\right\Vert_{L^p}+\left\Vert Au\right\Vert_{L^p}+\left\Vert (Mu)'\right\Vert_{L^p}+\left\Vert (Mu)''\right\Vert_{L^p}+\left\Vert (Mu)'''\right\Vert_{L^p}\\ & \quad+\left\Vert (Mu)''''\right\Vert_{L^p}+\left\Vert (Lu)'\right\Vert_{L^p}+\left\Vert (Lu)''\right\Vert_{L^p}+\left\Vert (Lu)'''\right\Vert_{L^p}+\left\Vert Bu'\right\Vert_{L^p}. \end{align*}

If $u\in S_p(A,\,B,\,M,\,L)$, then $Mu$, $(Mu)'$, $(Mu)''$ and $(Mu)'''$ are $X$-valued continuous functions on $\mathbb {T}$, and $Mu(0)=Mu(2\pi )$, $(Mu)'(0)=(Mu)'(2\pi )$, $(Mu)''(0)=(Mu)''(2\pi )$, $(Mu)'''(0)=(Mu)'''(2\pi )$ by [Reference Arendt and Bu5, Lemma 2.1].

Definition 2.10 Let $1\leq p<\infty$ and $f\in L^p(\mathbb {T}; X)$, $u\in S_p(A,\,B,\,M,\,L)$ is called a strong $L^p$-solution of ($P_4$), if ($P_4$) is satisfied a.e. on $\mathbb {T}$. We say that ($P_4$) is $L^p$-well-posed, if for each $f\in L^p(\mathbb {T}; X)$, there exists a unique strong $L^p$-solution of ($P_4$).

If ($P_4$) is $L^p$-well-posed, then there exists a constant $C>0$, such that for each $f\in L^p(\mathbb {T}; X)$, if $u\in S_p(A,\,B,\,M,\,L)$ is the unique strong $L^p$-solution of ($P_4$), we have

(2.5)\begin{equation} \left\Vert u\right\Vert_{S_p(A,B,M,L)}\leq C\left\Vert f\right\Vert_{L^p}. \end{equation}

This follows easily from the closed graph theorem.

In order to prove our main result of this section, we need the following preparations.

Proposition 2.11 Let $A$, $B$, $M$ and $L$ be closed linear operators defined on a UMD Banach space $X$ such that $D(A)\cap D(B)\subset D(M)\cap D(L)$, $1 < p < \infty$ and $\alpha,\,\ \beta,\, \gamma \in \mathbb {C}$. Let $F,\,G\in \mathcal {L}(L^p([-2\pi,\,0];X),\,X)$. Assume that $\rho _{M}(A,\,B,\,L) = \mathbb {Z}$ and the sets $\left \{a_kMN_k:k\in \mathbb {Z}\right \}$, $\left \{b_kLN_k:k\in \mathbb {Z}\right \}$, $\left \{c_kBN_k:k\in \mathbb {Z}\right \}$, $\{k\triangle G_k: k\in \mathbb {Z}\}$ and $\left \{kN_k:k\in \mathbb {Z}\right \}$ are $R$-bounded, then $\left (a_kMN_k\right )_{k\in \mathbb {Z}}$, $\left (b_kLN_k\right )_{k\in \mathbb {Z}}$, $\left (c_kBN_k\right )_{k\in \mathbb {Z}}$ and $\left (kN_k\right )_{k\in \mathbb {Z}}$ are $L^p$-Fourier multipliers.

Proof. We only need to show that the set $\{k(N_k^{-1} - N_{k+1}^{-1})N_k: k\in \mathbb {Z}\}$ is $R$-bounded by [Reference Conejero, Lizama, Murillo-Arcila and Seoane-Sepulveda11, Theorem 1.1] and theorem 2.4, here we have used the facts that $(a_k)_{k\in \mathbb {N}}$, $(b_k)_{k\in \mathbb {N}}$ and $(c_k)_{k\in \mathbb {N}}$ are $1$-regular sequences. It follows from the definition of $N_k$ that

(2.6)\begin{align} & (N_k^{{-}1}-N_{k+1}^{{-}1})N_k\nonumber\\ & \quad =[a_kM-b_kL-\beta A-c_kB-ikG_k-F_k-a_{k+1}M+b_{k+1}L+\beta A+c_{k+1}B\nonumber\\ & \qquad+i(k+1)G_{k+1}+F_{k+1}]N_k\nonumber\\ & \quad =[-\triangle a_kM+\triangle b_kL+\triangle c_kB+ik\triangle G_k+iG_{k+1}+\triangle F_k]N_k, \end{align}

which implies

(2.7)\begin{align} & k(N_k^{{-}1}-N_{k+1}^{{-}1})N_k\nonumber\\ & ={-}\frac{k\triangle a_k}{a_k}(a_kMN_k)+\frac{k\triangle b_k}{b_k}(b_kLN_k)+\frac{k\triangle c_k}{c_k}(c_kBN_k)\nonumber\\ & \quad+i(k\triangle G_k)(kN_k)+iG_{k+1}(kN_k)+\triangle F_k(kN_k), \end{align}

when $k\neq 0$. It follows from remark 2.3 that the products and sums of $R$-bounded sets are still $R$-bounded. Thus, the set $\{k(N_k^{-1} - N_{k+1}^{-1})N_k: k\in \mathbb {Z}\}$ is $R$-bounded. This completes the proof.

The following statement is the main result of this section which gives a necessary and sufficient condition for the $L^p$-well-posedness of ($P_4$).

Theorem 2.12 Let $X$ be a UMD Banach space, $1< p<\infty$ and let $A,\, B,\, L$ and $M$ be closed linear operators on $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\ \beta,\, \gamma \in \mathbb {C}$. Let $F,\,G\in \mathcal {L}(L^p([-2\pi,\,0];X),\,X)$ be such that the set $\{k\Delta G_k:\ k\in \mathbb {Z}\}$ is $R$-bounded. Then the following assertions are equivalent:

  1. (i) ($P_4$) is $L^p$-well-posed;

  2. (ii) $\rho _{M}(A,\,B,\,L)=\mathbb {Z}$, the sets $\{k^4MN_k:k\in \mathbb {Z}\},\, \{k^3LN_k:k\in \mathbb {Z}\}$, $\{kBN_k:k\in \mathbb {Z}\}$ and $\{kN_k:k\in \mathbb {Z}\}$ are $R$-bounded, where $N_k$ is defined by (2.3), the operators $F_k$ and $G_k$ are defined by (2.1).

Proof. First we show that the implication $(i)\Rightarrow (ii)$ holds true. We assume that ($P_4$) is $L^p$-well-posed and let $k\in \mathbb {Z}$ and $y\in X$ be fixed, we consider the function $f$ defined by $f(t)=e^{ikt}y$ when $t\in \mathbb {T}$. Then it is clear that $f\in L^p(\mathbb {T};X),\, \hat {f}(k)=y$ and $\hat {f}(n)=0$ when $n\neq k$. Since ($P_4$) is $L^p$-well-posed, there exists a unique $u\in S_p(A,\,B,\,L,\,M)$ satisfying

(2.8)\begin{align} (Mu)''''(t) + \alpha(Lu)'''(t) + (Lu)''(t) = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t) \end{align}

a.e. on $\mathbb {T}$. We have $\hat {u}(n)\in D(A)\cap D(B)$ when $n\in \mathbb {Z}$ by [Reference Arendt and Bu5, Lemma 3.1] as $u\in L^p (\mathbb {T}; D(A))\cap L^p(\mathbb {T}; D(B))$. Taking Fourier transforms on both sides of (2.8), we obtain

(2.9)\begin{equation} [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]\hat{u}(k)=y \end{equation}

and $[n^4M - (\alpha in^3+n^2)L - \beta A - i\gamma nB - inG_n - F_n]\hat {u}(n)=0$ when $n\neq k$. This implies that the operator $k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ defined on $D(A)\cap D(B)$ with values in $X$ is surjective. To show that it is also injective, we let $x\in D(A)\cap D(B)$ be such that

\[ [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]x=0. \]

Let $u$ be the function given by $u(t)=e^{ikt}x$ when $t\in \mathbb {T}$, then it is clear that $u\in S_p(A,\,B,\,M,\,L)$ and ($P_4$) is satisfied a.e. on $\mathbb {T}$ when $f=0$. Thus, $u$ is a strong $L^p$-solution of ($P_4$) when taking $f=0$. We obtain $x=0$ by the uniqueness assumption. We have shown that the operator $k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ from $D(A)\cap D(B)$ into $X$ is injective. Therefore, $k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ is bijective from $D(A)\cap D(B)$ onto $X$.

Next we show that $[k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{-1}\in \mathcal {L}(X)$. For $f(t)=e^{ikt}y$, we let $u\in S_p(A,\,B,\,M,\,L)$ be the unique strong $L^p$-solution of ($P_4$). Then

\[ \hat{u}(n)= \begin{cases} 0 & n\neq k,\\ [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1}y & n=k, \end{cases} \]

by (2.9). This implies that $u$ is given by

\[ u(t) = e^{ikt}[k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1}y \]

when $t\in \mathbb {T}$. By (2.5), there exists a constant $C>0$ independent from $y$ and $k$, such that $\left \Vert u\right \Vert _{L^p}\leq C\left \Vert f\right \Vert _{L^p}$. This implies that

\begin{align*} \big\Vert [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1}y\big\Vert\leq C\left\Vert y\right\Vert \end{align*}

when $y\in X$, or equivalently

\begin{align*} \left\Vert [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1}\right\Vert\leq C. \end{align*}

We have shown that $k\in \rho _{M}(A,\,B,\,L)$ for all $k\in \mathbb {Z}$. Thus, $\rho _{M}(A,\,B,\,L)=\mathbb {Z}$.

Finally, we show that $(k^4MN_k)_{k\in \mathbb {Z}},\,\ (k^3LN_k)_{k\in \mathbb {Z}}$, $(kN_k)_{k\in \mathbb {Z}}$ and $(kBN_k)_{k\in \mathbb {Z}}$ define $L^p$-Fourier multipliers. Let $f\in L^p(\mathbb {T};X)$, then there exists $u\in S_p(A,\,B,\,M,\,L)$, a strong $L^p$-solution of ($P_4$) by assumption. Taking Fourier transforms on both sides of ($P_4$), we get that $\hat {u}(k)\in D(A)\cap D(B)$ by [Reference Arendt and Bu5, Lemma 3.1] and

\[ [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]\hat{u}(k) = \hat{f}(k) \]

for $k\in \mathbb {Z}$. Since $k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k$ is invertible, we have

\[ \hat{u}(k) = [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1}\hat{f}(k) = N_k\hat f(k) \]

when $k\in \mathbb {Z}$. It follows from $u\in S_p(A,\,B,\,M,\,L)$ that $u\in L^{p}(\mathbb {T}; D(A))\cap W_{\text {per}}^{1,p}(\mathbb {T};X)$, $Mu\in W_{\text {per}}^{4,p}(\mathbb {T};X)$, $Lu \in W_{\text {per}}^{3,p}(\mathbb {T};X)$ and $u'\in L^p(\mathbb {T}; D(B))$. We have

\begin{align*} \widehat{(Mu)''''}(k)& =k^4M\hat{u}(k),\quad \widehat{(Lu)'''}(k)={-}ik^3L\hat{u}(k),\quad \widehat{Bu'}(k)\\& =ikB\hat{u}(k), \quad \widehat{u'}(k) = ik\hat u(k) \end{align*}

when $k\in \mathbb {Z}$. We conclude that $(k^4MN_k)_{k\in \mathbb {Z}},\, (k^3LN_k)_{k\in \mathbb {Z}}$, $(kBN_k)_{k\in \mathbb {Z}}$ and $(kN_k)_{k\in \mathbb {Z}}$ define $L^p$-Fourier multipliers as $(Mu)'''',\,\ (Lu)''',\,\ Bu',\,\ u'\in L^p(\mathbb {T};X)$. It follows from proposition 2.5 that the sets $\{k^4MN_k:k\in \mathbb {Z}\},\, \{k^3LN_k:k\in \mathbb {Z}\}$, $\{kBN_k:k\in \mathbb {Z}\}$ and $\{kN_k:k\in \mathbb {Z}\}$ are $R$-bounded. We have shown that the implication $(i)\Rightarrow (ii)$ is true.

Next we show that the implication $(ii)\Rightarrow (i)$ is valid. Assume that $\rho _{M}(A,\,B,\,L)=\mathbb {Z}$ and the sets $\{k^4MN_k:k\in \mathbb {Z}\},\, \{k^3LN_k:k\in \mathbb {Z}\}$, $\{kN_k:k\in \mathbb {Z}\}$ and $\{kBN_k:k\in \mathbb {Z}\}$ are $R$-bounded. It follows from proposition 2.11 that $(k^4MN_k)_{k\in \mathbb {Z}}$, $(k^3LN_k)_{k\in \mathbb {Z}}$, $(kBN_k)_{k\in \mathbb {Z}}$ and $(kN_k)_{k\in \mathbb {Z}}$ are $L^p$-Fourier multipliers. This implies that the sequences $(N_k)_{k\in \mathbb {Z}}$, $(BN_k)_{k\in \mathbb {Z}}$, $(k^2LN_k)_{k\in \mathbb {Z}}$, $(MN_k)_{k\in \mathbb {Z}}$, $(LN_k)_{k\in \mathbb {Z}}$ are $L^p$-Fourier multiplier. Here we have used the easy fact that $(d_k)_{k\in \mathbb {Z}}$ is an $L^p$-Fourier multiplier and the fact that the product of two $L^p$-Fourier multipliers is still an $L^p$-Fourier multiplier, where $d_k$ is defined by $d_k = 1/k$ when $k\not = 0$ and $d_0 =0$. In particular, considering $N_k\in \mathcal {L}(X,\, D(B))$, the sequence $(N_k)_{k\in \mathbb {Z}}$ is an $L^p$-Fourier multiplier. Then for all $f\in L^p(\mathbb {T};X)$, there exist $u_i\in L^p(\mathbb {T};X)$ ($1\leq i\leq 7$) and $u\in L^p(\mathbb {T}; D(B))$ satisfying

(2.10)\begin{align} \hat{u}_1(k) & = k^4MN_k\hat{f}(k),\quad \hat u_2(k)=ikN_k\hat f(k),\nonumber\\ \hat u_3(k) & = MN_k\hat f(k),\quad \hat u_4(k) = LN_k\hat f (k) \end{align}
(2.11)\begin{align} \hat u_5(k) & =ikBN_k\hat f(k),\quad \hat u_6(k) ={-}ik^3LN_k\hat f(k),\nonumber\\ \hat u_7(k) & ={-}k^2LN_k\hat f(k), \hat{u}(k) = N_k\hat{f}(k) \end{align}

for $k\in \mathbb {Z}$. Hence, $\hat u_2(k) = ik\hat u(k)$ for $k\in \mathbb {Z}$ by (2.10). This implies that $u\in W_{\text {per}}^{1,p}(\mathbb {T};X)$. It follows from (2.11) that $\widehat {u'}(k) = ik\hat u(k) = ikN_k\hat f(k)$ when $k\in \mathbb {Z}$. This together with $\hat u_5(k) =ikBN_k\hat f(k)$ when $k\in \mathbb {Z}$ implies that $u'\in L^p(\mathbb {T}; D(B))$ [Reference Arendt and Bu5, Lemma 3.1]. By (2.10) and (2.11), we have $\hat u_3(k)= M\hat u(k)$ when $k\in \mathbb {Z}$. Hence, $u\in L^p(\mathbb {T}; D(M))$ and $Mu = u_3$. Similarly, by using (2.10) and (2.11), we have $\hat u_4(k) = L\hat u(k)$ when $k\in \mathbb {Z}$. Thus, $u\in L^p(\mathbb {T}; D(L))$ and $Lu = u_4$ [Reference Arendt and Bu5, Lemma 3.1]. By (2.10) and the fact that $Mu = u_3$, we deduce $\hat u_1(k) = (ik)^4\widehat {Mu}(k) = (ik)^4\hat u_3(k)$ when $k\in \mathbb {Z}$. Thus, $Mu \in W_{\text {per}}^{4,p}(\mathbb {T}; X)$. Similarly, using (2.11) and the fact hat $Lu = u_4$, we deduce that $Lu \in W_{\text {per}}^{3,p}(\mathbb {T}; X)$.

We note that $(G_k)_{k\in \mathbb {Z}}$ and $(F_k)_{k\in \mathbb {Z}}$ are $L^p$-Fourier multipliers by (2.2), where $G_k,\, \ F_k$ and $H_k$ are defined by (2.1). Thus, $(ikG_kN_k)_{k\in \mathbb {Z}}$ and $(F_kD_k)_{k\in \mathbb {Z}}$ are $L^p$-Fourier multipliers as the product of two $L^p$-Fourier multipliers is still an $L^p$-Fourier multiplier. We have

\[ \beta AN_k = k^4MN_k - (\alpha ik^3+k^2)LN_k - i\gamma kBN_k - ikG_kN_k - F_kN_k - I_X \]

for $k\in \mathbb {Z}$. It follows that $\left (AN_k\right )_{k\in \mathbb {Z}}$ is also an $L^p$-Fourier multiplier as the sum of $L^p$-Fourier multipliers is an $L^p$-Fourier multiplier. We deduce from (2.11) and [Reference Arendt and Bu5, Lemma 3.1] that $u\in L^p(\mathbb {T};D(A))$. We have shown that $u\in S_p(A,\,B,\,M,\,L)$. This shows the existence of strong $L^p$-solution.

To show uniqueness of strong $L^p$-solution, we let $u\in S_p(A,\,B,\,M,\,L)$ be such that

\[ (Mu)'''(t) + \alpha(Lu)'''(t) + (Nu)''(t) = \beta Au(t) + \gamma Bu'(t)+ Gu'_t + Fu_t \]

a.e. on $\mathbb {T}$. Taking the Fourier transforms on both sides, we deduce that

\[ [k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB - ikG_k - F_k]\hat{u}(k)=0 \]

when $k\in \mathbb {Z}$. Since $\rho _{M}(A,\,B,\,L)=\mathbb {Z}$, this implies that $\hat {u}(k)=0$ when $k\in \mathbb {Z}$ and thus $u=0$. This shows that the solution is unique. This completes the proof.

We notice that the assumption that the underlying Banach space $X$ is a UMD space in theorem 2.12 was only used in the implication $(ii)\Rightarrow (i)$. Since the second statement of theorem 2.12 does not depend on the space parameter $1 < p < \infty$, theorem 2.12 has the following immediate consequence.

Corollary 2.13 Let $X$ be a $\rm {UMD}$ Banach space, let $A,\,B,\,L$ and $M$ be closed linear operators on $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$, and $\alpha,\,\ \beta,\,\ \gamma \in \mathbb {C}$. Then if ($P_4$) is $L^p$-well-posed for some $1 < p < \infty$, then it is $L^p$-well-posed for all $1 < p < \infty$.

3. Well-posedness of ($P_4$) in Besov spaces

In this section, we consider the well-posedness of ($P_4$) in periodic Besov spaces $B_{p,q}^s(\mathbb {T}; X)$. Firstly, we briefly recall the definition of periodic Besov spaces in the vector-valued case introduced in [Reference Arendt and Bu6]. Let $\mathcal {S}(\mathbb {R})$ be the Schwartz space of all rapidly decreasing smooth functions on $\mathbb {R}$. Let $\mathcal {D}(\mathbb {T})$ be the space of all infinitely differentiable functions on $\mathbb {T}$ equipped with the locally convex topology given by the seminorms $\left \Vert f\right \Vert _{\alpha }=\sup _{x\in \mathbb {T}}\left \vert f^{(\alpha )}(x)\right \vert$ for $\alpha \in \mathbb {N}_0:=\mathbb {N}\cup \left \{0\right \}$. Let $\mathcal {D}'(\mathbb {T}; X):=\mathcal {L}(\mathcal {D}(\mathbb {T}),\,X)$ be the space of all continuous linear operator from $\mathcal {D}(\mathbb {T})$ to $X$. We consider the dyadic-like subsets of $\mathbb {R}$:

\[ I_0=\left\{t\in\mathbb{R}:\left\vert t\right\vert\leq2\right\},I_k=\left\{t\in \mathbb{R}:2^{k-1}<\left\vert t\right\vert\leq 2^{k+1}\right\} \]

for $k\in \mathbb {N}$. Let $\phi (\mathbb {R})$ be the set of all systems $\phi =(\phi _k)_{k\in \mathbb {N}_0}\subset \mathcal {S}(\mathbb {R})$ satisfying $\text {supp}(\phi _k)\subset \bar {I}_k$ for each $k\in \mathbb {N}_0$, $\sum _{k\in \mathbb {N}_0}\phi _k(x)=1$ for $x\in \mathbb {R}$, and for each $\alpha \in \mathbb {N}_0$, $\sup _{ x\in \mathbb {R},\, k\in \mathbb {N}_0 }2^{k\alpha }\vert \phi _k^{(\alpha )}(x)\vert <\infty$. Let $\phi =(\phi _k)_{k\in \mathbb {N}_0}\subset \phi (\mathbb {R})$ be fixed. For $1\leq p, q\leq \infty, \,s\in \mathbb {R}$, the $X$-valued periodic Besov space is defined by

\begin{align*} B_{p,q}^s(\mathbb{T}; X)& =\Biggl\{f\in\mathcal {D}'(\mathbb{T}; X): \left\Vert f\right\Vert_{B_{p,q}^s}\\& :=\Biggl(\sum_{j\geq0}2^{sjq}\Big\Vert\sum_{k\in\mathbb{Z}}e_k\otimes \phi_j(k)\hat{f}(k)\Big\Vert_p^q\Biggr)^{1/q}<\infty\Biggr\} \end{align*}

with the usual modification if $q=\infty$. The space $B_{p,q}^s(\mathbb {T}; X)$ is independent from the choice of $\phi$ and different choices of $\phi$ lead to equivalent norms on $B_{p,q}^s(\mathbb {T}; X)$. $B_{p,q}^s(\mathbb {T}; X)$ equipped with the norm $\left \Vert \cdot \right \Vert _{B_{p,q}^s}$ is a Banach space. See [Reference Arendt and Bu6, Section 2] for more information about the space $B_{p,q}^s(\mathbb {T}; X)$. It is well known that if $s_1\leq s_2$, then $B_{p,q}^{s_1}(\mathbb {T}; X)\subset B_{p,q}^{s_2}(\mathbb {T}; X)$ and the embedding is continuous [Reference Arendt and Bu6, Theorem 2.3]. When $s>0$, it is shown in [Reference Arendt and Bu6, Theorem 2.3] that $B_{p,q}^s(\mathbb {T}; X)\subset L^p(\mathbb {T}; X)$, $f\in B_{p,q}^{s+1}(\mathbb {T}; X)$ if and only if $f$ is differentiable a.e. on $\mathbb {T}$ and $f'\in B_{p,q}^s(\mathbb {T}; X)$. This implies that if $u\in B_{p,q}^s(\mathbb {T}; X)$ is such that there exists $v\in B_{p,q}^s(\mathbb {T}; X)$ satisfying $\hat {v}(k)=ik\hat {u}(k)$ when $k\in \mathbb {Z}$, then $u\in B_{p,q}^{s+1}(\mathbb {T}; X)$ and $u'=v$.

Let $1\leq p,\,q\leq \infty,\, s>0$ be fixed. We consider the following four-order degenerate differential equations with finite delay:

(P 4)\begin{align*} & (Mu)''''(t) + \alpha (Lu)'''(t) + (Lu)''(t)\\ & \quad = \beta Au(t) + \gamma Bu'(t) + Gu'_t + Fu_t + f(t),\quad (t\in\mathbb{T}) \end{align*}

where $A,\, B,\, M$ and $L$ are closed linear operators on a Banach space $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\ \beta,\,\ \gamma \in \mathbb {C}$, $f\in B_{p,q}^s(\mathbb {T};X)$ is given, and $F,\,G:B_{p,q}^s([-2\pi,\,0];X)\rightarrow X$ are bounded linear operators. Moreover, for fixed $t\in \mathbb {T}$, $u_t\in B_{p,q}^s([-2\pi,\,0];X)$ is defined by $u_t(s)=u(t+s)$ for $-2\pi \leq s\leq 0$, here we identify a function $u$ on $\mathbb {T}$ with its natural $2\pi$-periodic extension on $\mathbb {R}$.

Let $F,\,G\in \mathcal {L}(B_{p,q}^s[-2\pi,\,0];X),\,X)$ and $k\in \mathbb {Z}$. We define the linear operators $F_k,\,\ G_k$ by

(3.1)\begin{equation} F_kx := F(e_k*\otimes x), \quad G_kx := G(e_k\otimes x) \end{equation}

when $x\in X$. It is clear that there exists a constant $C>0$ such that $\left \Vert e_k\otimes x\right \Vert _{B_{p,q}^s(\mathbb {T}; X)}\leq C\left \Vert x\right \Vert$ when $k\in \mathbb {Z}$. Thus,

(3.2)\begin{equation} \left\Vert F_k\right\Vert\leq C\left\Vert F\right\Vert,\quad\left\Vert G_k\right\Vert\leq C\left\Vert G\right\Vert \end{equation}

whenever $k\in \mathbb {Z}$. It can be seen easily that when $u\in B_{p,q}^s(\mathbb {T}; X)$, then

\[ \widehat{Fu_.}(k) = F_k\hat u(k), \quad \widehat{Gu_.}(k) = G_k\hat u(k) \]

for $k\in \mathbb {Z}$. The resolvent set of ($P_4$) in the $B_{p,q}^s$-well-posedness setting is defined by

\begin{align*} & \rho_{M}(A,B,L):= \big\{k\in\mathbb{Z}: k^4M - (\alpha ik^3+k^2)L - \beta A\\ & \quad - i\gamma kB - ikG_k - F_k\text{ is invertible from }\\ & D(A)\cap D(B) \text{ onto }X \ \text{and}\ [k^4M - (\alpha ik^3+k^2)L\\ & \quad - \beta A - i\gamma kB - ikG_k - F_k]^{{-}1} \in \mathcal{L}(X) \big\}. \end{align*}

For the sake of simplicity, when $k\in \rho _{M}(A,\,B,\,L)$, we will use the following notation:

(3.3)\begin{equation} N_k=[k^4M - (\alpha ik^3+k^2)L - \beta A - i\gamma kB- ikG_k - F_k]^{{-}1}. \end{equation}

If $k\in \rho _{M}(A,\,B,\,L)$, then $MN_k,\,\ LN_k,\,\ AN_k$ and $BN_k$ make sense as $D(A)\cap D(B)\subset D(M)\cap D(L)$ by assumption, and they belong to $\mathcal {L}(X)$ by the closed graph theorem and the closedness of $A,\,\ B,\,\ M$ and $L$.

Let $1\leq p,\,q\leq \infty,\,s>0$. It is noted that that the functions $Gu_.$ and $Fu'_.$ are uniformly bounded on $\mathbb {T}$, but they are not necessarily in $B_{p,q}^s(\mathbb {T};X)$. We define the solution space of $B_{p,q}^s$-well-posedness for ($P_4$) by

\begin{align*} S_{p,q,s}(A, B, M, L)& :=\big\{u\in B_{p,q}^s(\mathbb{T};D(A))\cap B_{p,q}^{1+s}(\mathbb{T};X)\\& \qquad:\ Mu\in B_{p,q}^{4+s}(\mathbb{T};X), Lu\in B_{p,q}^{2+s}(\mathbb{T};X),\\ & \qquad u'\in B_{p,q}^s(\mathbb{T}; D(B))\ \mbox{and}\ Fu_., Gu'_. \in B_{p,q}^{s}(\mathbb{T};X)\big\}. \end{align*}

Here again we consider $D(A)$ and $D(B)$ as Banach spaces equipped with their graph norms. $S_{p,q,s}(A,\, B,\, M,\, L)$ is a Banach space with the norm

\begin{align*} \left\Vert u\right\Vert_{S_{p,q,s}(A, B, M, L)}& :=\left\Vert u\right\Vert_{B_{p,q}^{1+s}(\mathbb{T}; X)}+\left\Vert u\right\Vert_{B_{p,q}^s(\mathbb{T}; D(A))}\\ & \quad+\left\Vert Mu\right\Vert_{B_{p,q}^{4+s}(\mathbb{T}; X)}+\left\Vert Lu\right\Vert_{B_{p,q}^{3+s}(\mathbb{T}; X)}\\ & \quad + \left\Vert u'\right\Vert_{B_{p,q}^{s}(\mathbb{T}; D(B))} + \left\Vert Fu_.\right\Vert_{B_{p,q}^s(\mathbb{T}; X)} + \left\Vert Gu'_.\right\Vert_{B_{p,q}^s(\mathbb{T}; X)}. \end{align*}

If $u\in S_{p,q,s}(A,\, B,\, M,\, L)$, then $Mu$, $(Mu)'$, $(Mu)''$ and $(Mu)'''$ are $X$-valued continuous function on $\mathbb {T}$, and $Mu(0)=Mu(2\pi )$,$(Mu)'(0)=(Mu)'(2\pi )$, $(Mu)''(0)=(Mu)''(2\pi )$ and $(Mu)'''(0)=(Mu)'''(2\pi )$ by [Reference Arendt and Bu5, Lemma 2.1].

Now we give the definition of the $B_{p,q}^s$-well-posedness of ($P_4$).

Definition 3.1 Let $1\leq p,\,q\leq \infty,\,s>0$ and $f\in B_{p,q}^s(\mathbb {T}; X)$, $u\in S_{p,q,s}(A,\,B, M,\,L)$ is called a strong $B_{p,q}^s$-solution of ($P_4$), if ($P_4$) is satisfied a.e. on $\mathbb {T}$. We say that ($P_4$) is $B_{p,q}^s$-well-posed, if for each $f\in B_{p,q}^s(\mathbb {T}; X)$, there exists a unique strong $B_{p,q}^s$-solution of ($P_4$).

If ($P_4$) is $B_{p,q}^s$-well-posed and $u\in S_{p,q,s}(A,\,B,\,M,\,L)$ is the unique strong $B_{p,q}^s$-solution of ($P_4$), there exists a constant $C>0$ such that for each $f\in B_{p,q}^s(\mathbb {T}; X)$, we have

(3.4)\begin{equation} \left\Vert u\right\Vert_{S_{p,q,s}(A,B,M,L)}\leq C\left\Vert f\right\Vert_{B_{p,q}^s}. \end{equation}

This is an easy result that can be obtained by the closedness of the operators $A$, $B$, $M$ and $L$ and the closed graph theorem.

Next we give the definition of operator-valued Fourier multipliers in the context of periodic Besov spaces, which is important in the proof of our main result of this section.

Definition 3.2 Let $X,\,Y$ be Banach spaces, $1\leq p,\,q\leq \infty,\,s\in \mathbb {R}$ and let $\left (M_k\right )_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$. We say that $\left (M_k\right )_{k\in \mathbb {Z}}$ is a $B_{p,q}^s$-Fourier multiplier, if for each $f\in B_{p,q}^s(\mathbb {T}; X)$, there exists $u\in B_{p,q}^s(\mathbb {T}; Y)$, such that $\hat {u}(k)=M_k\hat {f}(k)$ for all $k\in \mathbb {Z}$.

The following result has been obtained in [Reference Arendt and Bu6, Theorem 4.5] which gives a sufficient condition for an operator-valued sequence to be a $B_{p,q}^s$-Fourier multiplier. For the notions of $B$-convex Banach spaces, we refer the readers to [Reference Arendt and Bu6] and references therein.

Theorem 3.3 Let $X,\,Y$ be Banach spaces and let $\left (M_k\right )_{k\in \mathbb {Z}}\subset \mathcal {L}(X,\,Y)$. We assume that

(3.5)\begin{align} \sup_{k\in\mathbb{Z}}\big(\left\Vert M_k\right\Vert+\left\Vert k\bigtriangleup M_k\right\Vert\big)& =\sup_{k\in\mathbb{Z}}\big(\left\Vert M_k\right\Vert+\left\Vert k(M_{k+1}-M_k)\right\Vert\big)<\infty, \end{align}
(3.6)\begin{align} \sup_{k\in\mathbb{Z}}\left\Vert k^2\bigtriangleup^2 M_k\right\Vert& =\sup_{k\in\mathbb{Z}}\left\Vert k^2\big(M_{k+2}-2M_{k+1}+M_{k}\big)\right\Vert<\infty. \end{align}

Then for $1\leq p,\,q\leq \infty,\,s\in \mathbb {R}$, $\left (M_k\right )_{k\in \mathbb {Z}}$ is an $B_{p,q}^s$-multiplier. If $X$ is $B$-convex, then the first-order condition (3.5) is already sufficient for $\left (M_k\right )_{k\in \mathbb {Z}}$ to be a $B_{p,q}^s$-multiplier.

Remark 3.4

  1. (i) If $\left (M_k\right )_{k\in \mathbb {Z}}$ is a $B_{p,q}^s$-Fourier multiplier, then there exists a bounded linear operator $T$ from $B_{p,q}^s(\mathbb {T}; X)$ to $B_{p,q}^s(\mathbb {T}; Y)$ satisfying $\widehat {Tf}(k) = M_k\hat f(k)$ when $k\in \mathbb {Z}$. This implies in particular that $\left (M_k\right )_{k\in \mathbb {Z}}$ must be bounded.

  2. (ii) If $\left (M_k\right )_{k\in \mathbb {Z}}$ and $\left (N_k\right )_{k\in \mathbb {Z}}$ are $B_{p,q}^s$-Fourier multipliers, it can be seen easily that the product sequence $\left (M_kN_k\right )_{k\in \mathbb {Z}}$ and the sum sequence $\left (M_k+N_k\right )_{k\in \mathbb {Z}}$ are still $B_{p,q}^s$-Fourier multipliers.

  3. (iii) Let $c_k=\frac {1}{k}$ when $k\neq 0$ and $c_0=1$, then it is easy to see that the sequence $\left (c_kI_X\right )_{k\in \mathbb {Z}}$ satisfies the conditions (3.2) and (3.3). Thus, the sequence $\left (c_kI_X\right )_{k\in \mathbb {Z}}$ is a $B_{p,q}^s$-Fourier multiplier by theorem 3.3.

In order to prove our main result, we need the following facts.

Proposition 3.5 Let $A,\, B,\, M$ and $L$ be closed linear operators defined on a Banach space $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L),\,\ \alpha,\,\ \beta,\,\ \gamma \in \mathbb {C}$ and let $F,\,G\in \mathcal {L}(B_{p,q}^s([-2\pi,\,0];X),\,X)$, where $1\leq p,\,q\leq \infty$ and $s>0$. Assume that $\rho _M(A,\,B,\,L)=\mathbb {Z}$ and the sets $\{k\Delta ^2F_k:\ k\in \mathbb {Z}\}$, $\{k\Delta G_{k}:\ k\in \mathbb {Z}\},\,\{k^2\Delta ^2G_k:\ k\in \mathbb {Z}\}, \left \{k^4MN_k:\ k\in \mathbb {Z}\right \},\,\ \{k^3LN_k:k\in \mathbb {Z}\},\,\ \{kBN_k:k\in \mathbb {Z}\}$ and $\left \{kN_k:\ k\in \mathbb {Z}\right \}$ are norm-bounded, where $N_k$ is defined by (3.3), the operators $F_k,\,\ G_k,\,\ H_k$ are defined by (3.1). Then $(k^4MN_k)_{k\in \mathbb {Z}}$, $(k^3LN_k)_{k\in \mathbb {Z}}$, $(kBN_k)_{k\in \mathbb {Z}}$, $(N_k)_{k\in \mathbb {Z}}$, $(kN_k)_{k\in \mathbb {Z}}$, $(F_kN_k)_{k\in \mathbb {Z}}$ and $(kG_kN_k)_{k\in \mathbb {Z}}$ are $B_{p,q}^s$-Fourier multipliers.

Proof. It follows immediately from the norm boundedness of the set $\{kN_k:k\in \mathbb {Z}\}$ that the set $\{N_k:k\in \mathbb {Z}\}$ is norm-bounded. Let $L_k =(N_k^{-1} - N_{k+1}^{-1})N_k$ when $k\in \mathbb {Z}$. Then the set $\{kL_k: k\in \mathbb {Z}\}$ is norm-bounded by the proof of proposition 2.11. Since remark 2.7 and the sequence $(k^j)_{k\in \mathbb {Z}}$ is $2$-regular when $0\leq j\leq 3$, to show that $(k^4MN_k)_{k\in \mathbb {Z}}$, $(k^3LN_k)_{k\in \mathbb {Z}}$, $(kBN_k)_{k\in \mathbb {Z}}$, $(N_k)_{k\in \mathbb {Z}}$ and $(kN_k)_{k\in \mathbb {Z}}$ are $B_{p,q}^s$-Fourier multipliers, we only need to show that the set $\{k^2\Delta L_k: k\in \mathbb {Z}\}$ is norm-bounded by [Reference Conejero, Lizama, Murillo-Arcila and Seoane-Sepulveda11, Theorem 1.1] and theorem 3.3. We have

\begin{align*} L_k = L_k^{(1)} + L_k^{(2)}, \end{align*}

where

\begin{align*} & L_k^{(1)} :={-}\Delta a_kMN_k + \Delta b_kLN_k + \Delta c_kBN_k,\\ & L_k^{(2)}:=ik\Delta G_kN_k + iG_{k+1}N_k + \Delta F_kN_k, \end{align*}

when $k\in \mathbb {Z}$ by (2.6). We observe that

(3.7)\begin{align} \Delta L_k^{(1)}& ={-}\Delta a_{k+1}MN_{k+1} + \Delta b_{k+1}LN_{k+1}\nonumber\\ & \quad + \Delta c_{k+1}BN_{k+1} + \Delta a_kMN_k - \Delta b_kLN_k - \Delta c_kBN_k\nonumber\\ & ={-}\Delta^2a_kMN_{k+1} - \Delta a_kM\Delta N_k + \Delta^2b_kLN_{k+1}\nonumber\\ & \quad + \Delta b_kL\Delta N_k + \Delta^2 c_kBN_{k+1} + \Delta c_k B\Delta N_k\nonumber\\ & ={-}\Delta^2a_kMN_{k+1} - \Delta a_kMN_{k+1}L_k + \Delta^2b_kLN_{k+1}\nonumber\\ & \quad + \Delta b_kLN_{k+1}L_k + \Delta^2 c_kBN_{k+1} + \Delta c_k BN_{k+1}L_k, \end{align}

and

(3.8)\begin{align} \Delta L_k^{(2)}& =i(k+1)\Delta G_{k+1}N_{k+1} + iG_{k+2}N_{k+1}\nonumber\\ & \quad + \Delta F_{k+1}N_{k+1}-ik\Delta G_kN_k- iG_{k+1}N_k - \Delta F_kN_k\nonumber\\ & =ik\Delta^2G_kN_{k+1} + ik\Delta G_k\Delta N_k + i\Delta G_{k+1}N_{k+1} + i\Delta G_{k+1}N_{k+1}\nonumber\\ & \quad + iG_{k+1}\Delta N_k + \Delta^2 F_kN_{k+1} +\Delta F_k\Delta N_k\nonumber\\ & =ik\Delta^2G_kN_{k+1} + ik\Delta G_k\Delta N_k + 2i\Delta G_{k+1}N_{k+1} + iG_{k+1}\Delta N_k\nonumber\\ & \quad + \Delta^2 F_kN_{k+1} +\Delta F_k\Delta N_k\nonumber\\ & =ik\Delta^2G_kN_{k+1} + ik\Delta G_k N_{k+1}L_k + 2i\Delta G_{k+1}N_{k+1}\nonumber\\ & \quad + iG_{k+1}N_{k+1}L_k + \Delta^2 F_kN_{k+1} +\Delta F_k\Delta N_k, \end{align}

when $k\in \mathbb {Z}$. It follows from (3.7) and (3.8) that the sets$\{k^2\Delta L_k^{(1)}: k\in \mathbb {Z}\}$ and $\{k^2\Delta L_k^{(2)}: k\in \mathbb {Z}\}$ are norm-bounded by the norm boundedness of the sets $\{kL_k: k\in \mathbb {Z}\}$ and the assumptions that the sets $\{k\Delta ^2F_k:\ k\in \mathbb {Z}\}$, $\{k\Delta G_{k}: k\in \mathbb {Z}\},\,\{k^2\Delta ^2G_k:\ k\in \mathbb {Z}\},\, \left \{k^4MN_k:\ k\in \mathbb {Z}\right \},\,\{k^3LN_k:k\in \mathbb {Z}\},\,\{kBN_k:k\in \mathbb {Z}\}$ and $\left \{kN_k:\ k\in \mathbb {Z}\right \}$ are norm-bounded.

It remains to show that the sequences $(F_kN_k)_{ k\in \mathbb {Z}}$ and $(kG_kN_k)_{ k\in \mathbb {Z}}$ satisfy (3.5) and (3.6). This follows easily from the norm boundedness of the sets $\{k\Delta ^2F_k:\ k\in \mathbb {Z}\}$, $\{k\Delta G_{k}: k\in \mathbb {Z}\}$ and $\{k^2\Delta ^2G_k:\ k\in \mathbb {Z}\}$. We omit the details. The proof is completed.

Next we give a necessary and sufficient condition for $B_{p,q}^s$-well-posedness of ($P_4$). Its proof is just an easy adaptation of the proof of theorem 2.12 by using proposition 3.5. We omit the detail.

Theorem 3.6 Let $X$ be a Banach space, $1\leq p,\,q\leq \infty,\, s>0$, let $A,\, B,\, M$ and $L$ be closed linear operators on $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\, \beta,\,\ \gamma \in \mathbb {C}$. Let $F,\,G\in \mathcal {L}(B_{p,q}^s([-2\pi,\,0];X),\,X)$. We assume that the sets $\{k\Delta ^2F_k:\ k\in \mathbb {Z}\}$, $\{k\Delta G_{k}: k\in \mathbb {Z}\}$ and $\{k^2\Delta ^2G_k:\ k\in \mathbb {Z}\}$ are norm-bounded. Then the following assertions are equivalent:

  1. (i) ($P_4$) is $B_{p,q}^s$-well-posed.

  2. (ii) $\rho _{M}(A,\,B,\,L)=\mathbb {Z}$ and the sets $\left \{k^4MN_k: k\in \mathbb {Z}\right \},\,\ \{k^3LN_k:k\in \mathbb {Z}\},\,\ \{kBN_k:k\in \mathbb {Z}\}$ and $\left \{kN_k:\ k\in \mathbb {Z}\right \}$ are norm-bounded, where $N_k$ is defined by (3.3).

When the underlying Banach space $X$ is $B$-convex, the first-order Marcinkiewicz-type condition (3.5) is already sufficient for an operator-valued sequence to be a $B_{p,q}^s$-Fourier multiplier. This remark together with the proof of theorem 2.12 gives immediately the following result which gives an characterization of the $B_{p,q}^s$-well-posedness of ($P_4$) under a weaker condition on the sequence $(G_k)_{k\in \mathbb {Z}}$ when the underlying Banach space is $B$-convex.

Theorem 3.7 Let $X$ be a $B$-convex Banach space, $1\leq p,\,q\leq \infty,\, s>0$, let $A,\, B,\, M$ and $L$ be closed linear operators on $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\,\ \beta,\,\ \gamma \in \mathbb {C}$. Let $F,\,G\in \mathcal {L}(B_{p,q}^s([-2\pi,\,0];X),\,X)$. We assume that $\left \{k\Delta G_{k}:k\in \mathbb {Z}\right \}$ is norm-bounded. Then the following assertions are equivalent:

  1. (i) ($P_4$) is $B_{p,q}^s$-well-posed.

  2. (ii) $\rho _M(A,\,B,\,L)=\mathbb {Z}$ and the sets $\left \{k^4MN_k:\ k\in \mathbb {Z}\right \},\, \{k^3LN_k:k\in \mathbb {Z}\},\,\ \{kBN_k:k\in \mathbb {Z}\}$ and $\left \{kN_k: k\in \mathbb {Z}\right \}$ are norm-bounded, where $N_k$ is defined by (3.3).

Since the second statement of theorem 3.6 does not depend on the parameters $1\leq p,\,q\leq \infty,\, s>0$, theorem 3.6 has the following immediate consequence.

Corollary 3.8 Let $X$ be a Banach space, $1\leq p,\,q\leq \infty,\, s>0$, let $A,\, B,\, M$ and $L$ be closed linear operators on $X$ satisfying $D(A)\cap D(B)\subset D(M)\cap D(L)$ and $\alpha,\, \beta,\,\ \gamma \in \mathbb {C}$. Let $F,\,G\in \mathcal {L}(B_{p,q}^s([-2\pi,\,0];X),\,X)$. We assume that the sets $\{k\Delta ^2F_k:\ k\in \mathbb {Z}\}$, $\{k\Delta G_{k}: k\in \mathbb {Z}\}$ and $\{k^2\Delta ^2G_k:\ k\in \mathbb {Z}\}$ are norm-bounded. Then if ($P_4$) is $B_{p,q}^s$-well-posed for some $1\leq p,\,q\leq \infty,\, s>0$, then it is $B_{p,q}^s$-well-posed for all $1\leq p,\,q\leq \infty,\, s>0$.

4. Applications

Example 4.1 Let $\Omega$ be a bounded domain in $\mathbb {R}^k$ with smooth boundary, $m$ be a given non-negative-bounded measurable function on $\Omega$ and let $\alpha,\, \gamma \in \mathbb {C},\,\ \beta >0$ be given. We let $X$ be the Hilbert space $H^{-1}(\Omega )$, and let $F,\,G\in \mathcal {L}(L^p([-2\pi,\,0];X),\,X)$ for some $1 < p< \infty$. We consider the problem

\[ \left\{\begin{array}{@{}ll} \dfrac{\partial^4}{\partial t^4} (m(x)u(t, x)) + \alpha\dfrac{\partial^3}{\partial t^3} (m(x){u(t, x)}) + \dfrac{\partial^2}{\partial t^2} (m(x){u(t, x)})\\ = \beta \Delta u(t,x)+ \gamma\Delta\dfrac{\partial}{\partial t}u(t, x) + Gu'_t({\cdot}, x) + Fu_t({\cdot}, x) + f(t, x),\ (t, x) \in \mathbb{T}\times \Omega,\\ u(t, x)= 0, \ (t, x) \in \mathbb{T}\times \partial \Omega. \end{array} \right. \]

where $f$ is defined on $\mathbb {T}\times \Omega$ and the Laplacian $\Delta$ only acts on the space variable $x\in \Omega$, $u_t'$ and $u_t$ are defined by $u_t' (s,\, x) = u'(t+s,\, x)$ and $u_t' (s,\, x) = u(t+s,\, x)$ when $t\in \mathbb {T},\, \ s\in [-2\pi,\, 0]$ and $x\in \Omega$.

Let $M$ be the multiplication operator on $X$ by $m$, then there exist constants $C >0,\, \beta > 0$, such that

(4.1)\begin{equation} \big\Vert M(zM + \Delta)^{{-}1}\big\Vert \leq \frac{C}{1 + \vert z\vert} \end{equation}

whenever $Re (z)\leq \beta ( 1 + \vert Im (z)\vert )$ by [Reference Favini and Yagi12, Section 3.7], where $\Delta$ is the Laplacian on $H^{-1}(\Omega )$ with Dirichlet boundary condition. Let $A = \Delta$ and we assume that $D(A)\subset D(M)$. Then the above equation may be rewritten in the form

(P 1)\begin{align*} & (Mu)''''(t) + \alpha (Mu)'''(t) + (Mu)''(t)\\ & \quad = \beta Au(t) + \gamma A u'(t) + Gu'_t + Fu_t + f(t),\quad (t\in \mathbb{T}) \end{align*}

a differential equation on $\mathbb {T}$ with values in $X$, where $f\in L^p(\mathbb {T}; X)$ and the solution $u\in W_{\text {per}}^{1,p}(\mathbb {T}; D(A))$ satisfies $\ Mu\in W_{\text {per}}^{4,p}(\mathbb {T}; X)$.

We assume that $\rho _{M}(A,\,A,\,M)=\mathbb {Z}$ and the set $\left \{k\Delta G_{k}:k\in \mathbb {Z}\right \}$ is norm-bounded. Furthermore, we assume that $m > 0$ a.e. on $\Omega$ and $m$ is regular enough so that the multiplication operator by $m^{-1}$ is bounded on $H^{-1}(\Omega )$, then

(4.2)\begin{equation} \big\Vert (zM + \Delta)^{{-}1}\big\Vert \leq \frac{C}{1 + \vert z\vert} \end{equation}

whenever $Re z\leq \beta ( 1 + \vert Im z\vert )$ by (4.1). We claim that ($P_1$) is $L^p$-well-posed. Indeed, the operator $(k^4 - \alpha ik^3 - k^2)M - (\beta +ik) A - ikG_k - F_k: D(A) \to X$ is bijective and $[(k^4 - \alpha ik^3 - k^2)M - (\beta +ik) A - ikG_k - F_k]^{-1} \in \mathcal {L} (X)$ whenever $k\in \mathbb {Z}$ by the assumption $\rho _{M}(A,\,A,\,M)=\mathbb {Z}$. It follows that the sets

\[ \{k^2MN_k: k\in \mathbb{Z}\},\ \{\Delta N_k: k\in \mathbb{Z}\},\quad \{kN_k: k\in \mathbb{Z}\} \]

are norm-bounded by (4.1) and (4.2), where $N_k = [(k^4 - \alpha ik^3 - k^2)M - (\beta +ik) A - ikG_k - F_k]^{-1}$. Here we have used the uniform boundedness of the sequences $(F_k)_{k\in \mathbb {Z}}$ and $(G_k)_{k\in \mathbb {Z}}$. Thus, the problem ($P_1$) is $L^p$-well-posed by theorem 2.12. Here we have used the fact that $H^{-1} (\Omega )$ is a Hilbert space and the fact that every norm-bounded subset of $\mathcal {L}(X)$ is $R$-bounded when $X$ is isomorphic to a Hilbert space [Reference Arendt and Bu5].

Under the same assumptions, we obtain the $B_{p,q}^s$-well-posedness of ($P_1$) when $1\leq p,\, q\leq \infty$ by corollary 3.8.

Example 4.2 Let $H$ be a Hilbert space, $P$ be a densely defined positive self-adjoint operator on $H$ with $P\geq \delta > 0$. Let $M = P- \epsilon$ with $\epsilon < \delta$, and let $A = \sum _{i=0}^k a_iP^i$ with $a_i\geq 0,\,\ a_k > 0$, where $k$ is an integer $\geq 2$. Then there exists $C > 0$ and $\beta >0$ such that

(4.3)\begin{equation} \big\Vert M(zM + A)^{{-}1}\big\Vert \leq \frac{C}{1 + \vert z\vert} \end{equation}

whenever $Re z\geq -\beta ( 1 + \vert Im z\vert )$ by [Reference Favini and Yagi12, page 73]. If $M$ is regular enough so that $0\in \rho (M)$, then

(4.4)\begin{equation} \big\Vert (zM + A)^{{-}1}\big\Vert \leq \frac{C}{1 + \vert z\vert} \end{equation}

whenever $Re z\geq -\beta ( 1 + \vert Im z\vert )$ by (4.3).

Let $\Omega = (0,\, 1)$ and let $H = L^2(\Omega )$. It is clear that the operator $\frac {{\rm d}^2}{{\rm d}x^2}$ with domain $H^2(\Omega )\cap H_0^1(\Omega )$ generates a contraction semigroup on $H$ and $P = - \frac {{\rm d}^2}{{\rm d}x^2}$ is positive and self-adjoint in $H$ [Reference Arendt, Batty, Hieber and Neubrander4, Example 3.4.7]. Hence, $1\in \rho (\frac {{\rm d}^2}{{\rm d}x^2})$, or equivalently $M = I_X+ P$ has a bounded inverse. Let $\alpha,\, \gamma \in \mathbb {C}$ and $\beta < 0$ be fixed and let $F,\,G\in \mathcal {L}(L^p([-2\pi,\,0];X),\,X)$ for some $1 < p< \infty$, we consider the following equations:

\[ \left\{\begin{array}{@{}l} \dfrac{\partial^4}{\partial t^4} (1- \dfrac{\partial^2}{\partial x^2})u(t, x) +\alpha \dfrac{\partial^3}{\partial t^3} (1- \dfrac{\partial^2}{\partial x^2})u(t, x) + \dfrac{\partial^2}{\partial t^2} (1- \dfrac{\partial^2}{\partial x^2})u(t, x)\\ = \beta \dfrac{\partial^4}{\partial x^4} u(t, x) + \gamma\dfrac{\partial^4}{\partial x^4} \dfrac{\partial}{\partial t}u(t, x)\\ \quad + Gu'_t({\cdot}, x) + Fu_t ({\cdot}, x) + f(t, x), \quad (t, x) \in \mathbb{T}\times \Omega,\\ u(t, 0) = u(t, 1)= \dfrac{\partial^2}{\partial x^2}u(t, 0) = \dfrac{\partial^2}{\partial x^2}u(t, 1) = 0, \ t \in \mathbb{T}. \end{array} \right. \]

This equation can be rewritten in the compact form:

(P 2)\begin{align*} & (Mu)''''(t) + \alpha (Mu)'''(t) + (Mu)''(t)\\ & \quad = \beta Au(t) + \gamma A u'(t) + Gu'_t + Fu_t + f(t), \quad (t\in \mathbb{T}) \end{align*}

a differential equation on $\mathbb {T}$ with values in $H$, where $f\in L^p(\mathbb {T}; H)$ and the solution $u$ is in $u\in W_{\text {per}}^{1,p}(\mathbb {T}; D(A))$, satisfies $Mu\in W_{\text {per}}^{4,p}(\mathbb {T}; H)$, where $M = 1- \frac {\partial ^2}{\partial x^2}$ and $A= \Delta ^2$, here we consider $\Delta$ as the Laplacian on $L^2(\Omega )$ with Dirichlet boundary condition. If $\rho _{M}(A,\,A,\,M)=\mathbb {Z}$, one can obtain the $L^p$-well-posedness of ($P_2$) by using (4.3), (4.4) and theorem 2.12 under suitable assumption on the delay operator $G$. Here again we have used the fact that $L^2 (\Omega )$ is a Hilbert space and the fact that every norm-bounded subset of $\mathcal {L}(X)$ is $R$-bounded when $X$ is isomorphic to a Hilbert space [Reference Arendt and Bu5]. One can also obtain the $B_{p,q}^s$-well-posedness pf ($P_2$) when $1\leq p,\, q\leq \infty$ by using theorem 3.6 or corollary 3.8.

Acknowledgements

This work was supported by the NSF of China (grant No. 12171266, 12171062) and the Natural Science Foundation of Chongqing (grant No. CSTB2022NSCQ-JQX0004).

References

Aparicio, R. and Keyantuo, V..Well-posedness of degenerate integro-differential equations in function spaces. Electron. J. Differ. Equ. 79 (2018), 31.Google Scholar
Aparicio, R. and Keyantuo, V.. Besov maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces. Math. Methods Appl. Sci. 43 (2020), 72397268.CrossRefGoogle Scholar
Aparicio, R. and Keyantuo, V.. $L^p$-maximal regularity for a class of degenerate integro-differential equations with infinite delay in Banach spaces. J. Fourier Anal. Appl. 26 (2020), 34. 39 pp.CrossRefGoogle Scholar
Arendt, W., Batty, C., Hieber, M. and Neubrander, F.. Vector-valued Laplace Transforms and Cauchy problems (Basel, Birkhäuser, 2001).CrossRefGoogle Scholar
Arendt, W. and Bu, S.. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311343.CrossRefGoogle Scholar
Arendt, W. and Bu, S.. Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. 47 (2004), 1533.CrossRefGoogle Scholar
Bose, S. K. and Gorain, G. C.. Exact controllability and boundary stabilization of flexural vibrations of an internally damped flexible space structure. Appl. Math. Comput. 126 (2002), 341360.Google Scholar
Bose, S. K. and Gorain, G. C.. Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure. J. Optim. Theory Appl. 99 (1998), 423442.Google Scholar
Bu, S.. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Stud. Math. 214 (2013), 116.CrossRefGoogle Scholar
Bu, S. and Kim, J.. Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math. Sin. Engl. Ser. 21 (2005), 10491056.CrossRefGoogle Scholar
Conejero, J. A., Lizama, C., Murillo-Arcila, M. and Seoane-Sepulveda, J. B.. Well-posedness degenerate third-order equations with delay and applications to inverse problems. Isr. J. Math. 229 (2019), 219254.CrossRefGoogle Scholar
Favini, A. and Yagi, A., Degenerate Differential Equations in Banach Spaces, Pure and Appl. Math., Vol. 215 (Dekker, New York, Basel, Hong Kong, 1999).CrossRefGoogle Scholar
Gorain, G. C.. Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in $\mathbb {R}^n$. J. Math. Anal. Appl. 319 (2006), 635650.CrossRefGoogle Scholar
Kaltenbacher, B., Lasiecka, I. and Pospieszalska, M.. Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci. 22 (2012), 1250035. 34 pp.CrossRefGoogle Scholar
Leal, C., Lizama, C. and Murillo-Arcila, M.. Lebesgue regularity for nonlocal time-discrete equations with delays. Fract. Calc. Appl. Anal. 21 (2018), 696715.CrossRefGoogle Scholar
Lizama, C. and Ponce, R.. Periodic solutions of degenerate differential equations in vector valued function spaces. Stud. Math. 202 (2011), 4963.CrossRefGoogle Scholar
Lizama, C. and Ponce, R.. Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. Proc. Edin. Math. Soc. 56 (2013), 853871.CrossRefGoogle Scholar
Poblete, V., Poblete, F. and Pozo, J. C.. Strong solutions of a neutral type equations with finite delay. J. Evol. Equ. 19 (2019), 361386.CrossRefGoogle Scholar
Poblete, V. and Pozo, J. C.. Periodic solutions of an abstract third-order differential equation. Stud. Math. 215 (2013), 195219.CrossRefGoogle Scholar
Ponce, R.. On well-posedness of degenerate fractional differential equations in vector valued function spaces. Isr. J. Math. 219 (2017), 727755.CrossRefGoogle Scholar