Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-23T23:01:47.289Z Has data issue: false hasContentIssue false

Mechanism and site of action of a dopamine D1 antagonist in the rabbit retina

Published online by Cambridge University Press:  02 June 2009

Ralph J. Jesen
Affiliation:
Department of Biomedical Sciences, Southern College of Optometry, Memphis

Abstract

Dopamine D1 antagonists have been shown to alter drastically the spontaneous and light-evoked activity of ganglion cells in the rabbit retina (Jensen & Daw, 1984, 1986). A major target of dopaminergic neurons in mammalian retinas appears to be rod All amacrine cells (Pourcho, 1982; Voigt & Wässle, 1987). In the present study, the following questions were addressed: (1) Do dopamine D1 antagonists alter the activity of ganglion cells through actions primarily on rod All amacrine cells? (2) Are the effects of dopamine D1 antagonists on ganglion cells due to an inhibition of dopamine-stimulated adenylate cyclase activity?

Using an isolated, superfused retinal preparation, the ability of several pharmacological agents to counteract the physiological effects of the dopamine D1 antagonist (+)-SCH 23390 on rabbit ganglion cells was examined. The glycine antagonist strychnine abolished the effects of (+)-SCH 23390 on the spontaneous and light-evoked activity of OFF-center ganglion cells, whereas the excitatory amino-acid antagonist kynurenic acid abolished the effects of (+)-SCH 23390 on the spontaneous and light-evoked activity of ON-center ganglion cells. The findings obtained with these antagonists can be explained in terms of the known synaptic connections of All amacrine cells.

Both 8-(4-chlorophenylthio) cyclic AMP, a membrane-permeable cAMP analog, and forskolin, an activator of adenylate cyclase, reversed the effects of (+)-SCH 23390 on the spontaneous and light-evoked activity of OFF-center ganglion cells but not ON-center ganglion cells. These findings suggest that the effects of dopamine D1 antagonists on OFF-center ganglion cells are due to an inhibition of dopamine-stimulated adenylate cyclase, with the ensuing lowering of cellular cAMP levels. The effects of dopamine D1 antagonists on ON-center ganglion cells appear, however, to be independent of intracellular cAMP levels.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloomfield, S.A. & Dowling, J.E. (1985). Roles of aspartate and glutamate in synaptic transmission in rabbit retina, II: Inner plexiform layer. Journal of Neurophysiology 53, 714725.CrossRefGoogle ScholarPubMed
Brown, J.H. & Makman, M.H. (1973). Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina. Journal of Neurochemistry 21, 477479.CrossRefGoogle ScholarPubMed
Bucher, M.-B. & Schorderet, M. (1975). Dopamine- and apomorphine-sensitive adenylate cyclase in homogenates of rabbit retina. Naunyn-Schmiedeberg's Archives of Pharmacology 288, 103107.CrossRefGoogle ScholarPubMed
Caldwell, J.H. & Daw, N.W. (1978). New properties of rabbit retinal ganglion cells. Journal of Physiology 276, 257276.CrossRefGoogle ScholarPubMed
Coleman, P.A., Massey, S.C. & Miller, R.F. (1986). Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina. Brain Research 381, 172175.CrossRefGoogle ScholarPubMed
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Dacheux, R.F., Strettoi, E. & Raviola, E. (1986). Rod pathways in the inner plexiform layer (IPL) of the rabbit retina. Investigative Ophthalmology and Visual Science (Suppl.) 30, 63.Google Scholar
Daw, N.W., Brunken, W.J. & Jensen, R.J. (1989). The function of monoamines in the rabbit retina. In The Neurobiology of the Inner Retina, ed. Osborne, N. & Weiler, R., pp. 363374. Berlin: Springer- Verlag.CrossRefGoogle Scholar
Dowling, J.E. & Ehinger, B. (1978). Synaptic organization of the dopaminergic neurons in the rabbit retina. Journal of Comparative Neurology 180, 203220.CrossRefGoogle ScholarPubMed
Dowling, J.E., Lasater, E.M. & Young, L.H.Y. (1985). Some new approaches and directions in retinal research. In Neurocircuitry of the Retina. A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 118. New York: Elsevier.Google Scholar
Ehinger, B. (1983). Functional role of dopamine in the retina. In Progress in Retinal Research, ed. Osborne, N.N. & Chader, G.J., Vol. 2, pp. 213232. New York: Pergamon Press.Google Scholar
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84, 293300.CrossRefGoogle Scholar
Hokoc, J.N. & Mariani, A.P. (1988). Synapses from bipolar cells onto dopaminergic amacrine cells in cat and rabbit retinas. Brain Research 461, 1726.CrossRefGoogle Scholar
Holmgren-Taylor, I. (1982). Ultrastructure and synapses of the [3H]- dopamine-accumulating neurons in the retina of the rabbit. Experimental Eye Research 35, 555572.CrossRefGoogle ScholarPubMed
Jensen, R.J. & Daw, N.W. (1984). Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina. Journal of Neuroscience 4, 29722985.CrossRefGoogle ScholarPubMed
Jensen, R.J. & Daw, N.W. (1986). Effects of dopamine and its agonists and antagonists on the receptive-field properties of ganglion cells in the rabbit retina. Neuroscience 17, 837855.CrossRefGoogle ScholarPubMed
Kaneko, A. (1973). Receptive-field organization of bipolar and amacrine cells in the goldfish retina. Journal of Physiology 235, 133153.CrossRefGoogle ScholarPubMed
Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron microscoptic observations. Journal of Neurocytology 8, 295329.CrossRefGoogle Scholar
Kolb, H. & Famiglietti, E.V. (1974). Rod and cone pathways in the inner plexiform layer of cat retina. Science 186, 4749.CrossRefGoogle ScholarPubMed
Massey, S.C. & Miller, R.F. (1988). Glutamate receptors of ganglion cell in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. Journal of Physiology 405, 635655.CrossRefGoogle ScholarPubMed
Müller, F., Wässle, H. & Voigt, T. (1988). Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59, 16571672.CrossRefGoogle ScholarPubMed
Negishi, K., Teranishi, T. & Kato, S. (1985). Dopaminergic interplexiform cells and their regulatory function for spatial properties of horizontal cells in the fish retina. In Neurocircuitry of the Retina. A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 7788. New York: Elsevier.Google Scholar
Nelson, R. (1982). All amacrine cells quicken the time course of rod signals in the cat retina. Journal of Neurophysiology 47, 928947.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1985). A17: A broad-field amacrine cell in the rod system of the cat retina. Journal of Neurophysiology 54, 592614.CrossRefGoogle ScholarPubMed
Piccolino, M., Witkovsky, P., Neyton, J., Gerschenfeld, H.M. & Trimarchi, C. (1985). Modulation of gap junction permeability by dopamine and GABA in the network of horizontal cells of the turtle retina. In Neurocircuitry of the Retina. A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 6676. New York: Elsevier.Google Scholar
Pourcho, R.G. (1982). Dopaminergic amacrine cells in the cat retina. Brain Research 252, 101109.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1985). A combined Golgi and autoradiographic study of [3H]-glycine-accumulating amacrine cells in the cat retina. Journal of Comparative Neurology 233, 473480.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1987). Visualization of endogenous glycine in cat retina: an immunocytochemical study with Fab fragments. Journal of Neuroscience 7, 11891197.CrossRefGoogle ScholarPubMed
Pycock, C.J. & Smith, L.F.P. (1983). Interactions of dopamine and the release of [3H]-taurine and [3H]-glycine from the isolated retina of the rat. British Journal of Pharmacology 78, 395404.CrossRefGoogle ScholarPubMed
Qu, Z-X., Fertel, R., Neff, N.H. & Hadjiconstantinou, M. (1989). Pharmacological characterization of rat retinal dopamine receptors. Journal of Pharmacology and Experimental Therapeutics 248, 621625.Google ScholarPubMed
Raviola, E. & Dacheux, R.F. (1987). Excitatory dyad synapse in rabbit retina. Proceedings of the National Academy of Sciences of the U.S.A. 84, 73247328.CrossRefGoogle ScholarPubMed
Redburn, D., Clement-Cormier, Y.C. & Lam, D.M.K. (1980). Dopamine receptors in goldfish retina: 3H-spiroperidol and 3H-domperidone binding and dopamine stimulated adenylate cyclase activity. Life Science 27, 2331.CrossRefGoogle ScholarPubMed
Sandell, J.H., Masland, R.H., Raviola, E. & Dacheux, R.F. (1989). Connections of indoleamine-accumulating cells in the rabbit retina. The Journal of Comparative Neurology 283, 303313.CrossRefGoogle ScholarPubMed
Smith, R.G., Freed, M.A. & Sterling, P. (1986). Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. Journal of Neuroscience 6, 35053517.CrossRefGoogle ScholarPubMed
Sterling, P. (1983). Microcircuitry of the cat retina. Annual Review of Neuroscience 6, 149185.CrossRefGoogle ScholarPubMed
Tork, I. & Stone, J. (1979). Morphology of catecholamine-containing amacrine cells in the cat's retina, as seen in retinal whole mounts. Brain Research 169, 261273.CrossRefGoogle ScholarPubMed
Toyoda, J-I. & Kujiraoka, T. (1982). Analyses of bipolar cell responses elicited by polarization of horizontal cells. Journal of General Physiology 79, 131145.CrossRefGoogle ScholarPubMed
Voigt, T. & Wässle, H. (1987). Dopaminergic innervation of All amacrine cells in mammalian retina. Journal of Neuroscience 7, 41154128.CrossRefGoogle ScholarPubMed
Watling, K.J., Dowling, J.E. & Iversen, L.L. (1979). Dopamine receptors in the retina may all be linked to adenylate cyclase. Nature 281, 578580.CrossRefGoogle ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. Journal of Neurophysiology 32, 339355.CrossRefGoogle ScholarPubMed