Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T05:59:27.882Z Has data issue: false hasContentIssue false

Observation of Meyer-Neldel rule in amorphous films of Ge1–xSe2Pbx

Published online by Cambridge University Press:  14 January 2009

M. M. El-Nahass*
Affiliation:
Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
H. M. Abd El-Khalek
Affiliation:
Physics Department, Faculty of Science, Suez Canal University, Port-Said, Egypt
H. M. El-Mallah
Affiliation:
Department of Physics & Mathematical Engineering, Faculty of Engineering, Suez Canal University, Port-Said, Egypt
F. S. Abu-Samaha
Affiliation:
Department of Physics & Mathematical Engineering, Faculty of Engineering, Suez Canal University, Port-Said, Egypt
Get access

Abstract

Electrical conductivity was performed on amorphous thin films of Ge1–xSe2Pbx (with x = 0, 0.2, 0.4, 0.6 and 0.8) as a function of temperature in the range 300–450 K. The experimental results indicate that the conduction is through thermally activated process having two conduction mechanisms. In the first region at high-temperatures range, the values of $\sigma _{o}$ suggest that the dominant conduction of charge carriers changes from the extended states to the localized states in the band tails at composition x = 0.8. The experimental results have also been analyzed using Meyer-Neldel Rule. The other one appears in the low temperatures region and the conductivity has been analyzed using Mott's variable range hopping conduction. Mott's parameters were calculated for Ge1–xSe2Pbx films.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El-Den, M.B., El-Nahass, M.M., Opt. Laser Technol. 35, 335 (2003) CrossRef
Kumar, S., Khan, Z.H., Khan, M.A.M., Husain, M., Curr. Appl. Phys. 5, 561 (2005) CrossRef
Nushwaha, N., Kushwaha, V.S., Shukla, R.K., Kumar, A., J. Non-Cryst. Sol. 351, 3414 (2005)
Abbe, S., Furukawa, Y., Mochizuki, K., Masumato, K., J. Jpn Inst. Met. 58, 346 (1994) CrossRef
Lambrecht, A., Kurbel, R., Agne, M., Mater. Sci. Eng. 21, 217 (1993) CrossRef
Agne, M., Lambrecht, A., Schiessl, U., Tacke, M., Infrared Phys. Technol. 35, 47 (1994) CrossRef
Bhatia, K.L., Malik, S.K., Kishoree, N., Singh, S.P., Phil. Mag. B 66, 587 (1992) CrossRef
Rahman, S., Raman, M.V., Sastry, G.S., Phys. Chem. Glass. 33, 209 (1992)
Rabinal, M.K., Sangunni, K.S., Gopal, E.S.R., Subramanyam, S.V., Physica B 205, 403 (1995) CrossRef
Sedeek, K., Adam, A., Wahab, L.A., Hafez, F.M., Mat. Chem. Phys. 85, 20 (2004) CrossRef
Pattanaik, A.K., Srinivasan, A., J. Appl. Sci. 5, 1 (2005)
Adam, A., Physica B 367, 72 (2005) CrossRef
Wahab, L.A., Amer, H.H., Mat. Chem. Phys. 100, 430 (2006) CrossRef
El-Nahass, M.M., El-Den, M.B., El-Mallah, H.M., Abu-Samaha, F.S., J. Phys. Chem. Sol. 69, 2652 (2008) CrossRef
Pattanaik, A.K., Srinivasan, A., Semicond. Sci. Technol. 19, 157 (2004) CrossRef
Davis, E.A., Mott, N.F., Phil. Mag. 22, 903 (1970) CrossRef
Rehm, W., Fischer, R., Stuke, J., Wagner, H., Phys. Stat. Sol. B 79, 539 (1977) CrossRef
Spear, W.E., Allen, D., Le Comber, P.G., Ghaith, A., Phil. Mag. B 41, 419 (1980) CrossRef
Street, R.A., Kakalios, J., Tsai, C.C., Hayes, T.M., Phys. Rev. B 35, 1316 (1987) CrossRef
Meyer, W., Neldel, H., Z. Tech. Phys. 12, 588 (1937)
Widenhorn, R., Restand, A., Bodegom, E., J. Appl. Phys. 91, 6524 (2002) CrossRef
Kirbs, V., Druesedau, T., Fiedler, H., J. Phys.: Condens. Mat. 2, 7473 (1990)
Abdel-Wahab, F., J. Appl. Phys. 91, 265 (2002) CrossRef
Tassis, D.H., Dimitriadis, C.A., Valassiades, O., J. Appl. Phys. 84, 2960 (1998) CrossRef
Morii, K., Matsui, T., Tsuda, H., Mabuchi, H., Appl. Phys. Lett. 77, 2361 (2000) CrossRef
N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)