Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-16T00:36:27.488Z Has data issue: false hasContentIssue false

Grown-in vacancy-type defects in poly- and single crystalline silicon investigated by positron annihilation

Published online by Cambridge University Press:  24 January 2007

S. Dannefaer*
Affiliation:
Department of Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9
V. Avalos
Affiliation:
Department of Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9
O. Andersen
Affiliation:
Topsil Semiconductor Materials, Linderupvej 4, PO Box 100, 3600 Frederikssund, Denmark
Get access

Abstract

Positron annihilation was used to characterize vacancy-type defects in two types of polycrystalline Si grown at temperatures above ~800 °C by chemical vapour deposition. The majority of vacancies (80%) consisted of monovacancies, and their thermal stability indicated them to be trapped at grain boundaries or at dislocations. Annealing above 500 °C caused a significant reduction in the monovacancy concentration, and an increase in divacancy concentration. Divacancies started to anneal above 1200 °C. Measurements between 8 and 293 K indicated that vacancies were neutral before as well as after annealing at 1380 °C. Fz-grown Si from one of these materials contained vacancy clusters with an average size of six to ten vacancies which persisted to 1380 °C. The cluster concentration corresponded to a monovacancy concentration of 1015 to 1016 cm−3, which is at least one order of magnitude larger than estimates based on voids [R. Falster, V.V. Voronko, F. Quast, Phys. Status Solidi B 222, 219 (2000)].

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dannefaer, S., Dean, G.W., Kerr, D.P., Hogg, B.G., Phys. Rev. B 14, 2709 (1976) CrossRef
Mascher, P., Dannefaer, S., Kerr, D., Phys. Rev. B 40, 11764 (1989) CrossRef
Mäkinen, J., Hautojärvi, P., Corbel, C., J. Phys.-Cond. Matter 4, 5137 (1992) CrossRef
Kawasuso, A., Suezawa, M., Hasegawa, M., Yamaguchi, S., Sumino, K., Jpn J. Appl. Phys. 34, 4579 (1995), Part 1 CrossRef
Krause-Rehberg, R., Brohl, M., Leipner, H.S., Drost, Th., Polity, A., Beyer, U., Alexander, H., Phys. Rev. B 47, 13266 (1993) CrossRef
Leipner, H.S., Wang, Z., Jr, H. Gu. Mikhnovich, V. Bondarenko, R. Krause-Rehberg, J.L. Demenet, J. Rabier, Phys. Status Solidi A 201, 2021 (2004) CrossRef
R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors (Springer Verlag, Berlin, 1999)
Saito, M., Oshiyama, A., Phys. Rev. B 53, 7810 (1996) CrossRef
Makhov, D.V., Lewis, L.J., Phys. Rev. B 71, 205215 (2005) CrossRef
West, R.N., Adv. Phys. 22, 263 (1973) CrossRef
P. Kirkegaard, N.J. Petersen, M. Eldrup, PATFIT-88, Risø M-2740 (Risø, DK 4000 Roskilde, Denmark)
Gebauer, J., Rudolf, F., Polity, A., Krause-Rehberg, R., Martin, J., Becker, P., Appl. Phys. A 68, 411 (1999) CrossRef
Hastings, J.L., Estricher, S.K., Fedders, P.A., Phys. Rev. B 56, 10215 (1997) CrossRef
Chadi, D.J., Chang, K.J., Phys. Rev. B 38, 1523 (1988) CrossRef
Dannefaer, S., Avalos, V., Kerr, D., Poirier, R., Shamarovoz, V., Zhang, S.H., Phys. Rev. B 73, 115202 (2006) CrossRef
Falster, R., Voronko, V.V., Quast, F., Phys. Status Solidi B 222, 219 (2000) 3.0.CO;2-U>CrossRef