Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-15T20:28:11.686Z Has data issue: false hasContentIssue false

Experimental and numerical tools for miscible fluid displacements studies inporous media with large heterogeneities

Published online by Cambridge University Press:  15 September 1999

P. Berest*
Affiliation:
Laboratoire Fluides, Automatique et Systèmes Thermiques (UMR 7608 associated to CNRS and to the Pierre et Marie Curie and Paris-Sud Universities), bâtiment 502, Campus Paris-Sud, 91405 Orsay Cedex, France
N. Rakotomalala
Affiliation:
Laboratoire Fluides, Automatique et Systèmes Thermiques (UMR 7608 associated to CNRS and to the Pierre et Marie Curie and Paris-Sud Universities), bâtiment 502, Campus Paris-Sud, 91405 Orsay Cedex, France
J. P. Hulin
Affiliation:
Laboratoire Fluides, Automatique et Systèmes Thermiques (UMR 7608 associated to CNRS and to the Pierre et Marie Curie and Paris-Sud Universities), bâtiment 502, Campus Paris-Sud, 91405 Orsay Cedex, France
D. Salin
Affiliation:
Laboratoire Fluides, Automatique et Systèmes Thermiques (UMR 7608 associated to CNRS and to the Pierre et Marie Curie and Paris-Sud Universities), bâtiment 502, Campus Paris-Sud, 91405 Orsay Cedex, France
Get access

Abstract

Due to technical errors, the figures have been badly printed. We publish entirely the article herein, sincerely apologizing to the authors for the unpleasant inconvenience.

We present a set of complementary experimental and numerical tools for studying miscible fluid displacements in porous media with large scale heterogeneities. Experiments are realized in transparent 2D Hele-Shaw cells allowing optical observations and in 3D packings of glass beads with an acoustical technique for imaging fluid displacements. Permeability heterogeneities are modeled by spatial variations of either the local aperture of the Hele-Shaw cell or the diameter of the grains used in the packing. The Hele-Shaw cell model provides high resolution maps of the invasion front location at regular time intervals and of the flow lines: the velocity field is determined by combining these informations. Acoustical images of relative concentration distributions in the 3D packing are in agreement with Hele-Shaw cell data and can be obtained in a broader range of experimental situations. Such experiments realized with a stabilizing density contrast between invading and displaced fluids demonstrate a strong reduction of the front width at low flow velocities, a similar reduction is obtained at high velocities with a stabilizing viscosity contrast. The technique is also applicable to study fluid displacements in natural opaque media. Numerical simulations by a Boltzmann lattice technique using a Stokes-like diffusive term to smooth out the effect of permeability discontinuities provide complementary informations. They are shown to give similar results as experiments for same flow parameter values and to allow for a fast exploration of a broad range of fluid properties and flow situations.

Keywords

Type
Correction
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Bear, Dynamics of fluids in porous media (Elsevier Publishing Co., New-York, 1972).
F.A.L. Dullien, Porous media, fluid transport and pore structure, 2nd edn. (Academic Press, New-York, 1991).
Leroy, C., Hulin, J.P., Lenormand, R., J. Contamin. Hydrol. 11, 51 (1992). CrossRef
Lenormand, R., Transp. Porous Media 18, 245 (1995)
J.R. Waggoner, J.L. Castillo, L.W. Lake, paper SPE 21237 (1991).
K.S. Sorbie, G.E. Pickup, P.S. Ringrose, J.L. Jensen, paper SPE/DOE 24140 (1992).
Gelhar, L.W., Axness, C.A., Water Resources Res. 19, 161 (1983). CrossRef
Dagan, G., Water Resources Res. 26, 1281 (1990). CrossRef
L. Zhan, Ph.D. thesis, University of Southern California, 1999; Y.C. Yortsos (private communication).
Taylor, G.I., Proc. Roy. Soc. A 219, 186 (1953). CrossRef
Aris, R., Proc. Roy. Soc. A 235, 65 (1956). CrossRef
Yortsos, Y.C., Transp. Porous Media 18, 107 (1995). CrossRef
Yang, Z.M., Yortsos, Y.C., Phys. Fluids 9, 286 (1997). CrossRef
Salin, D., Schon, W., J. Phys. Lett. 42, L477 (1981). CrossRef
Bacri, J.-C., Hoyos, M., Lenormand, R., Rakotomalala, N., Soucemariadin, A., Salin, D., J. Phys. III France 1, 1455 (1991). CrossRef
Saffman, P.G., J. Fluid Mech. 6, 321 (1959); ibid. 7, 194 (1960). CrossRef
Fried, J.J., Combarnous, M., Adv. Hydrosci. 7, 169 (1971). CrossRef
Koch, D.L., Brady, J.F., J. Fluid. Mech. 154, 399 (1985). CrossRef
Kempers, L.J.T.M., Haas, H., J. Fluids Mech. 267, 299 (1994). CrossRef
Bacri, J.-C., Salin, D., Woumeni, R., Phys. Rev. Lett. 67, 2005 (1991). CrossRef
Tchelepi, H.A., Orr, F.M., Rakotomalala, N., Salin, D., Woumeni, R., Phys. Fluids A 5, 1558 (1993) and references therein. CrossRef
Loggia, D., Rakotomalala, N., Salin, D., Yortsos, Y.C., Europhys. Lett. 32, 633 (1995). CrossRef
Frisch, U., Hasslacher, B., Pomeau, Y., Phys. Rev. Lett 56, 1505 (1986). CrossRef
Rothman, D.H., Zaleski, S., Rev. Mod. Phys. 66, 1417 (1994) and references therein. CrossRef
Bathnagar, P.L., Gross, E.P., Krook, M., Phys. Rev. 94, 511 (1954). CrossRef
Qian, Y.H., d'Humières, D., Lallemand, P., Europhys. Lett. 17, 479 (1992). CrossRef
Chen, H., Comp. Phys. 7, 632 (1993) CrossRef
Flekkoy, E.G., Phys. Rev. E 47, 4247 (1993). CrossRef
Oxaal, U., Flekkoy, E.G., Feder, J., Phys. Rev. Lett. 72, 3514 (1994). CrossRef
Rakotomalala, N., Salin, D., Watzky, P., J. Fluid Mech. 338, 277 (1997). CrossRef
Rakotomalala, N., Salin, D., Watzky, P., Phys. Fluids 8, 3200 (1996). CrossRef