Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-22T11:56:19.677Z Has data issue: false hasContentIssue false

Optimum Operating Conditions of 14C-Methane Isotope Enrichment By Concentric Type Thermal Diffusion Columns for Use in Radiocarbon Dating

Published online by Cambridge University Press:  18 July 2016

Helmut Erlenkeuser*
Affiliation:
Institut für Reine und Angewandte Kernphysik, 14C Laboratory, University of Kiel, Olshausenstrasse 40-60, 2300 Kiel, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The optimum operating conditions providing minimum run-time and running costs have been studied theoretically for a thermal diffusion plant to be used for the enrichment of the radiocarbon isotope from finite sample size.

The calculations are based on a simple approximate model of the enrichment process, regarding the isotope separation column as operating under quasi-stationary state conditions. The temporal variation of the isotope accumulation is given by a single exponential term. From comparison with the numerical solution of the separation tube equation, approximate models of this simple type appear hardly sufficient for analytical work but seem well suited for optimization calculations. For column operation not too close to the equilibrium state, the approximate run-times were found accurate within 0.2 d.

The approximate model has been applied to a column of the concentric type, operated on gaseous methane. Cross-section configuration and temperatures were not varied (hot and cold wall radii: 2.0 and 2.6cm, respectively; hot and cold wall temperatures: 400°C and 14°C, respectively). The column transport coefficients used were derived from measurements. Run-time was minimized by optimizing both the operating pressure and the sample collection mode for different total sample size (range studied: 24 to 100 g), mass of enriched sample (1.8, 2.4, and 3.0 g), enrichment factor (12, 15, and 20) and column length (8 to 18 m). Optimum working pressures are between 1 and 2 atm. Usually, about 90 percent of the enriched sample mass is extracted favorably from the column itself, the length of the sampling section being about 2.5 to 5 m. Typical runtimes are between 3 days and 2 weeks, and isotope yield may reach 90 percent.

Optimum operating conditions have also been calculated for other column configurations reported in literature and are compared with the experimental results.

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

Bennett, C L, Beukens, R P, Clover, M R, Gove, H E, Liebert, R B, Litherland, A E, Purser, K H, and Sondheim, W E, 1977, Radiocarbon dating using electrostatic accelerators: Negative ions provide the key: Science, v 198, p 508510.Google Scholar
Dickel, G, 1958, Quantitative Anreicherung im Trennrohr, in Kistemaker, J, Bigeleisen, J, Nier, A O C, eds, Internat Isotope Separation Symposium Proc: Amsterdam, p 433445.Google Scholar
Dickel, G., 1962, Quantitative enrichment of 14C in a thermal diffusion column for improvement of age determination: Kernenergie, v 5, p 278280.Google Scholar
Dickel, G and Kretner, R, 1973, Quantitative enrichment of 14C in a thermal diffusion column for use in radiocarbon dating technique: Proc Int Meeting on Isotope Effects in Physical and Chemical Processes, Cluj/Romania.Google Scholar
Erlenkeuser, H, 1971a, Predictable low enrichment of methane isotopes by Clusius-Dickel thermal diffusion columns for use in radiocarbon dating technique: Zeitschr Naturforsch, v 26a, p 13651370.Google Scholar
Erlenkeuser, H, 1971b, Aufbau einer Thermodiffusionsanlage zur Anreicherung von Methan-Isotopen in Hinblick auf die Verwendung bei Altersbestimmungen nach der 14C-Methode: PhD thesis, Univ Kiel.Google Scholar
Erlenkeuser, H 1973a, Calculation of the time dependence of the enrichment factor in a thermal diffusion column: Internat Mtg on Isotope Effects in Physical and Chemical Processes, Cluj/Romania.Google Scholar
Erlenkeuser, H 1973b, Evaluation of the thermal diffusion factor of a gaseous 13CH4/12CH1 binary mixture from thermal diffusion column measurements: Internat. Mtg. Google Scholar
Erlenkeuser, H 1976, A thermal diffusion plant for radiocarbon isotope enrichment from natural samples: Internatl Radiocarbon Conf, 9th, Los Angeles and San Diego.Google Scholar
Felber, H and Pak, E, 1973, Erweiterung der 14C-Altersbestimmungsmethode durch quantitative Isotopenanreicherung im Trennrohr: Sitzungsber Österr Akad Wiss, Mathem-Naturw K1, Abt II, v 180 (1972), p 299316.Google Scholar
Felber, H and Pak, E 1974, Quantitative isotope enrichment in a thermal diffusion arrangement: Appl Physics, v 5, p 147152.Google Scholar
Fleischmann, R and Jensen, H, 1942, Das Trennrohr (nach Clusius und Dickel). Erg exakt Naturwiss, v 20, p 121182.Google Scholar
Grootes, P M, Mook, W G, Vogel, J C, deVries, A E, Haring, A, and Kistemaker, J, 1975, Enrichment of radiocarbon for dating samples up to 75,000 years: Zeitschr Naturforsch, v 30a, p 114.Google Scholar
Grootes, P, ms, 1977, Thermal diffusion isotopic enrichment and radiocarbon dating beyond 50,000 years bp: PhD thesis, Univ Groningen.Google Scholar
Haring, A, deVries, A E, and deVries, H, 1958, Radiocarbon dating up to 70,000 years by isotope enrichment: Science, v 128, p 472473.CrossRefGoogle Scholar
Henseler, T, ms, 1973, Aufbau einer Thermodiffusionsanlage zur Anreicherung von Methan-Isotopen und experimentelle Untersuchung des Trennverhaltens: Diplomarbeit, Univ Kiel.Google Scholar
Henseler, T ms, 1977, Eine vierstufige Thermodiffusionssäulen-Kaskade. Aufbau, Untersuchung des Trennverhaltens und quantitative Anreicherung von Kohlenstoffisotopen in Methan: PhD thesis, Univ Kiel. Google Scholar
Jones, R C and Furry, W H, 1946, The separation of isotopes by thermal diffusion: Rev Mod Phys, v 18, p 151224.Google Scholar
Kretner, R, ms, 1973, Quantitative Anreicherung von 14CH4 mit dem Clusius-Dickelschen Trennrohr zur Anwendung in der C14 Datierungsmethode: PhD thesis, Univ München.Google Scholar
Kretner, R and Dickel, G, 1975, Enrichment of 14CH4 by thermal diffusion for use in radiocarbon dating: Zeitschr Naturforsch, v 30a, p 554560.Google Scholar
Muller, R A, 1977, Radioisotope dating with a cyclotron: Science, v 196, p 489494.Google Scholar
Pak, E, ms, 1970, Erweiterung der C14-Altersbestimmungsmethode durch Isotopenanreicherung im Trennrohr: PhD thesis, Univ Wien.Google Scholar
Stuiver, M, Heusser, C J, and Yang, I C, 1978, North American glacial history back to 75,000 years bp: Science, v 200, p 1620.Google Scholar
deVries, A E, Haring, A, and Slots, W, 1956, Separation of 14C16O and 12C18O by thermal diffusion: Physica, v 22, p 247248 Google Scholar