Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T17:23:59.236Z Has data issue: false hasContentIssue false

Integrin antagonists as inhibitors of bone resorption: implications for treatment

Published online by Cambridge University Press:  15 January 2013

Michael A. Horton*
Affiliation:
Bone and Mineral Centre, Department of Medicine, The Rayne Institute, University College London, 5 University St, London WC1E 6JJ, UK
*
Corresponding author: Professor M. A. Horton, fax +44 20 7679 6219, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Currently ‘accepted’ treatments for bone disease utilise drugs that inhibit osteoclastic bone resorption; these lead to a reduction in subsequent bone loss and thence, indirectly, to an increase in bone mass and fewer fractures. Three classes of compounds currently form the mainstay of therapy for osteoporosis: oestrogens (hormone-replacement therapy), ‘selective oestrogen receptor modulators’ and the bisphosphonates. Problems of patient compliance, real or theoretical long-term toxicological risks and the lack of bone anabolic agents of clinical utility suggest that there is a need for the development of further novel osteoclast resorption inhibitors. Recent biological and genetic findings in the area of bone cell function have led to the identification of new drug targets. These drugs include agents that (directly or indirectly): inhibit osteoclast adhesion to bone matrix; modify osteoclast differentiation; act on the proton pump and hence affect extracellullar acidification; antagonise extracellular enzymes that are involved in bone matrix protein degradation. Particular emphasis is placed in the present review on the evaluation of antagonists of αvβ3 integrin-mediated cell adhesion for use in bone disease. The wealth of new agents being developed suggests that resorption inhibition will be the best treatment for osteoporosis in the short to medium term, with the long-term aim still being toward developing anabolic drugs or cell therapeutics.

Type
Clinical Metabolism and Nutrition Group Symposium on ‘Nutritional aspects of bone metabolism from molecules to organisms’
Copyright
Copyright © The Nutrition Society 2001

References

Bilezikian, JP, Raisz, LG & Rodan, GA (editors) (1996) Principles of Bone Biology. San Diego, CA: Academic Press.Google Scholar
Capparelli, C, Kostenuik, PJ, Morony, S, Starnes, C, Weimann, B, Van, G, Scully, S, Qi, M, Lacey, DL & Dunstan, CR (2000) Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Research 60, 783787.Google Scholar
Chambers, TJ, Fuller, K, Darby, JA, Pringle, JA & Horton, MA (1986) Monocloncal antibodies against osteoclast inhibit bone resorption in vitro. Bone Mineral 1, 127135.Google Scholar
Clark, EA & Brugge, JS (1995) Integrins and signal transduction pathways: the road taken. Science 268, 233239.CrossRefGoogle ScholarPubMed
Coller, BS (1997) GPIIb/IIIa antagonists: pathophysiologic and therapeutic insights from studies of c7E3 Fab. Thrombosis and Haemostasis 78, 730735.Google ScholarPubMed
Corbett, JW, Graciani, NR, Mousa, SA & DeGrado, WF (1997) Solid-phase synthesis of a selective alpha(v)beta(3) integrin antagonist library. Bioorganic and Medicinal Chemistry Letters 7, 13711376.CrossRefGoogle Scholar
Cox, D, Aoki, T, Seki, J, Motoyama, Y & Yoshida, K (1994) The pharmacology of the integrins. Medicinal Research Reviews 14, 195228.CrossRefGoogle ScholarPubMed
Devoto, M, Shimoya, K, Caminis, J, Ott, J, Tenenhouse, A, Whyte, MP, Sereda, L, Hall, S, Considine, E, Williams, CJ, Tromp, G, Kuivaniemi, H, Ala-Kokko, L, Prockop, DJ & Spotila, LD (1998) First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. European Journal of Human Genetics 6, 151157.CrossRefGoogle ScholarPubMed
Dhingra, K (1999) Antiestrogens – tamoxifen, SERMs and beyond. Investigational New Drugs 17, 285311.CrossRefGoogle ScholarPubMed
Engleman, VW, Nickols, GA, Ross, FP, Horton, MA, Griggs, DW, Settle, SL, Ruminski, PG & Teitelbaum, SL (1997) A peptidomimetic antagonist of the alpha(v) beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. Journal of Clinical Investigation 99, 22842292.CrossRefGoogle ScholarPubMed
Ferguson, JJ & Zaqqa, M (1999) Platelet glycoprotein IIb/IIIa receptor antagonists: current concepts and future directions. Drugs 58, 965982.CrossRefGoogle ScholarPubMed
Fisher, JE, Caulfield, MP, Sato, M, Quartuccio, HA, Gould, RJ, Garsky, VM, Rodan, GA & Rosenblatt, M (1993) Inhibition of osteoclastic bone resorption in vivo by echistatin, an ‘Arginyl-Glycyl-Aspartyl’ (RGD)-containing protein. Endocrinology 132, 14111413.CrossRefGoogle ScholarPubMed
Fitzgerald, LA, Steiner, B, Rall, SC, Lo, SS & Phillips, DR (1987) Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Journal of Biological Chemistry 267, 39363939.CrossRefGoogle Scholar
Gadek, T & Blackburn, BK (1996) Identification and development of integrin/ligand antagonists for the treatment of human disease. In Adhesion Receptors as Therapeutic Targets, pp. 247272 [Horton, MA, editor\. Boca Raton, FL: CRC Press.Google Scholar
Gatti, D & Adami, S (1999) New bisphosphonates in the treatment of bone diseases. Drugs and Agents 15, 285296.CrossRefGoogle ScholarPubMed
Gelb, BD, Shi, GP, Chapman, HA & Desnick, RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273, 12361238.CrossRefGoogle ScholarPubMed
Gould, RJ (1993) The integrin αIIbβ3 as an antithrombotic target. Perspectives in Drug Discovery and Design 1, 537548.CrossRefGoogle Scholar
Hartman, GD & Duggan, ME (2000) αvβ3 integrin antagonists as inhibitors of bone resorption. Expert Opinion in Investigational Drugs 9, 12811291.CrossRefGoogle ScholarPubMed
Haubner, R, Gratias, R, Diefenbach, B, Goodman, SL, Jonczyk, A & Kessler, H (1996) Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin alpha(v)beta(3) antagonists. Journal of the American Chemical Society 118, 74617472.CrossRefGoogle Scholar
Helfrich, MH & Horton, MA (1999) Integrins and adhesion molecules. In Dynamics of Bone and Cartilage Metabolism, pp. 111125 [Seibel, MJ, Robins, SP and Bilezikian, JP, editors]. San Diego, CA: Academic Press.Google Scholar
Helfrich, MH, Nesbitt, SA, Lakkakorpi, PT, Barnes, MJ, Bodary, SC, Shankar, G, Mason, WT, Mendrick, DL, Väänänen, HK & Horton, MA (1996) Beta 1 integrins and osteoclast function: involvement in collagen recognition and bone resorption. Bone 19, 317328.CrossRefGoogle ScholarPubMed
Hoekstra, WJ & Poulter, BL (1998) Combinatorial chemistry techniques applied to nonpeptide integrin antagonists. Current Medicinal Chemistry 5, 194204.CrossRefGoogle ScholarPubMed
Horton, MA (1997) The αvβ3 integrin ‘vitronectin receptor’. International Journal of Biochemistry and Cell Biology 29, 721725.CrossRefGoogle Scholar
Horton, MA, Dorey, EL, Nesbitt, SA, Samanen, J, Ali, FE, Stadel, JM, Nichols, A, Greig, R & Helfrich, MH (1993) Modulation of vitronectin receptor-mediated osteoclast adhesion by Arg-Gly-Asp-Peptide analogs: a structure-function analysis. Journal of Bone and Mineral Research 8, 239247.CrossRefGoogle ScholarPubMed
Horton, MA & Rodan, GA (1996) Integrins as therapeutic targets in bone disease. In Adhesion Receptors as Therapeutic Targets, pp. 223245 [Horton, MA, editor\. Boca Raton, FL: CRC Press.Google Scholar
Horton, MA, Taylor, ML, Arnett, TR & Helfrich, MH (1991) Arg-Gly-Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Experimental Cell Research 195, 368375.CrossRefGoogle ScholarPubMed
Hughes, PE & Pfaff, M (1998) Integrin affinity modulation. Trends in Cell Biology 8 359364.CrossRefGoogle ScholarPubMed
Hynes, RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 1125.CrossRefGoogle ScholarPubMed
Isacke, CM & Horton, MA (2000) The Adhesion Molecule Factsbook, 2nd ed. London: Academic Press.Google Scholar
Johnson, ML, Gong, G, Kimberling, W, Recker, SM, Kimmel, DB & Recker, RB (1997) Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). American Journal of Human Genetics 60, 13261332.CrossRefGoogle ScholarPubMed
Kong, YY, Feige, U, Sarosi, I, Bolon, B, Tafuri, A, Morony, S, Capparelli, C, Li, J, Elliott, R, McCabe, S, Wong, T, Campagnuolo, G, Moran, E, Bogoch, ER, Van, G, Nguyen, LT, Ohashi, PS, Lacey, DL, Fish, E, Boyle, WJ & Penninger, JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304309.CrossRefGoogle ScholarPubMed
Kunicki, TJ, Annis, DS & Felding-Habermann, B (1997) Molecular determinants of Arg-Gly-Asp ligand specifically for beta(3) integrins. Journal of Biological Chemistry 272, 41034107.CrossRefGoogle Scholar
Lark, MW, Stroup, GB, Hwang, SM, James, IE, Rieman, DJ, Drake, FH, Bradbeer, JN, Mathur, A, Erhard, KF, Newlander, KA, Ross, ST, Salyers, KL, Smith, BR, Miller, WH, Huffman, WF & Gowen, M (1999) Design and characterization of an orally active Arg-Gly-Asp peptidomimetic vitronectin receptor antagonist, SB 265123, for the prevention of bone loss in osteoporosis. Journal of Pharmacology and Experimental Therapeutics 291, 612617.Google ScholarPubMed
Lazarus, RA & McDowell, RS (1993) Structural and functional aspects of RGD-containing protein antagonists of glycoprotein IIb-IIIa. Current Opinion in Biotechnology 4, 438445.CrossRefGoogle ScholarPubMed
Lin, KC & Castro, AC (1998) Very late antigen 4 (VLA4) antagonists as anti-inflammatory agents. Current Opinion in Chemical Biology 2, 453457.CrossRefGoogle ScholarPubMed
Marcus, R, Feldman, D & Kelsey, J (editors) (1996). Osteoporosis. San Diego, CA: Academic Press.Google ScholarPubMed
Meunier, PJ (1999) Evidence-based medicine and osteoporosis: a comparison of fracture risk reduction data from osteoporosis randomised clinical trials. International Journal of Clinical Practice 53, 122129.CrossRefGoogle ScholarPubMed
Miller, WH, Bondinell, WE, Cousins, RD, Erhard, KF, Jakas, DR, Keenan, RM, Ku, TW, Newlander, KA, Ross, ST, Haltiwanger, RC, Bradbeer, J, Drake, FH, Gowen, M, Hoffman, SJ, Hwang, SM, James, IE, Lark, MW, Lechowska, B, Rieman, DJ, Stroup, GB, Vasko-Moser, JA, Zembryki, DL, Azzarano, LM, Adams, PC & Huffman, WF (1999) Orally bioavailable nonpeptide vitronectin receptor antagonists with efficacy in an osteoporosis model. Bioorganic and Medicinal Chemistry Letters 9, 18071812.CrossRefGoogle Scholar
Miller, WH, Keenan, R, Willette, RN & Lark, MW (2000) Identification and in vivo efficacy of small molecule antagonists of integrin αvβ3 (the ‘vitronectin receptor’). Drug Discovery Today 5, 397408.CrossRefGoogle ScholarPubMed
Nesbitt, S, Nesbit, A, Helfrich, M & Horton, M (1993) Biochemical characterisation of human osteoclast integrins. Osteoclasts express αvβ3, α2β1 and αvβ1 integrins. Journal of Biological Chemistry 268, 1673716745.CrossRefGoogle Scholar
Pasqualini, R, Koivunen, E & Ruoslahti, E (1995) A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. Journal of Cell Biology 130, 11891196.CrossRefGoogle ScholarPubMed
Peyman, A, Wehner, V, Knolle, J, Stilz, HU, Breipohl, G, Scheunemann, KH, Carniato, D, Ruxer, JM, Gourvest, JF, Gadek, TR & Bodary, S (2000) RGD mimetics containing a central hydantoin scaffold: αvβ3 versus αIIbβ3 selectivity requirements. Bioorganic Medicinal Chemistry Letters 10, 179182.CrossRefGoogle Scholar
Pfaff, M, Tangemann, K, Muller, B, Gurrath, M, Muller, G, Kessler, H, Timpl, R & Engel, J (1994) Selective recognition of cyclic RGD peptides of NMR defined conformation by αIIbβ3, αvβ3 and α5β1 integrins. Journal of Biological Chemistry 269, 2023320238.CrossRefGoogle Scholar
Phillips, DR & Scarborough, RM (1997) Clinical pharmacology of eptifibatide. American Journal of Cardiology 80, 11B20B.CrossRefGoogle ScholarPubMed
Pierschbacher, MD & Ruoslahti, E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 3033.CrossRefGoogle ScholarPubMed
Pytela, R, Pierschbacher, MD & Rouslahti, E (1985) A 125/115-kDa cell surface receptor specific for vitronectin interacts with the Arginine-Glycine-Aspartic acid adhesion sequence derived form fibronectin. Proceedings of the National Academy of Sciences USA 82, 57665770.CrossRefGoogle Scholar
Rittmaster, RS, Bolognese, M, Ettinger, MP, Hanley, DA, Hodsman, AB, Kendler, DL & Rosen, CJ (2000) Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. Journal of Clinical Endocrinology and Metabolism 85, 21292134.Google ScholarPubMed
Rodan, SB, Duong, L, Fisher, JE, Gentile, M, Leu, C-T, Nagy, RM, Wesolowski, G, Duggan, ME, Hoffman, WF, Ihle, RM, Whitman, DB & Rodan, GA (1996) A high affinity non-peptide αvβ3 ligand inhibits osteoclast activity in vitro and in vivo. Journal of Bone and Mineral Research 11, Suppl. I, S289.Google Scholar
Ruoslahti, E (1996) RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology 12, 697715.CrossRefGoogle ScholarPubMed
Samanen, JM (1996) GPIIb/IIIa antagonists. Annual Reports In Medicinal Chemistry 31, 91100.CrossRefGoogle Scholar
Samanen, JM, Ali, FE, Barton, LS, Bondinell, WE, Burgess, JL, Callahan, JF, Calvo, RR, Chen, W, Chen, L, Erhard, K, Feuerstein, G, Heys, R, Hwang, SM, Jakas, DR, Keenan, RM, Ku, TW, Kwon, C, Lee, CP, Miller, WH, Newlander, KA, Nichols, A, Parker, M, Peishoff, CE, Rhodes, G & Huffman, WF (1996) Potent, selective, orally active 3-oxo-1,4-benzodiazepine GPIIb/IIIa integrin antagonists. Journal of Medicinal Chemistry 39, 48674870.CrossRefGoogle ScholarPubMed
Sato, M, Sardana, MK, Grasser, WA, Garsky, VM, Murray, JM & Gould, RJ (1990) Echistatin is a potent inhibitor of bone resorption in culture. Journal of Cell Biology 111, 17131723.CrossRefGoogle ScholarPubMed
Scimeca, JC, Franchi, A, Trojani, C, Parrinello, H, Grosgeorge, J, Robert, C, Jaillon, O, Poirier, C, Gaudray, P & Carle, GF (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26, 207213.CrossRefGoogle Scholar
Simonet, WS, Lacey, DL, Dunstan, CR, Kelley, M, Chang, MS, Luthy, R, Nguyen, HQ, Wooden, S, Bennett, L, Boone, T, Shimamoto, G, DeRose, M, Elliott, R, Colombero, A, Tan, HL, Trail, G, Sullivan, J, Davy, E, Bucay, N, Renshaw-Gegg, L, Hughes, TM, Hill, D, Pattison, W, Campbell, P & Boyle, WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309319.CrossRefGoogle ScholarPubMed
Soriano, P, Montgomery, C, Geske, R & Bradley, A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693702.CrossRefGoogle ScholarPubMed
Stenbeck, G & Horton, MA (2000) A new specialized cell-matrix interaction in actively resorbing osteoclasts. Journal of Cell Science 113, 15771587.CrossRefGoogle ScholarPubMed
Suzuki, S, Argraves, WS, Pytela, R, Arai, H, Krusius, T, Pierschbacher, MD & Ruoslahti, E (1986) cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proceedings of the National Academy of Sciences USA 83, 86148618.CrossRefGoogle ScholarPubMed
Tcheng, JE (1996) Glycoprotein IIb/IIIa receptor inhibitors: putting the EPIC, IMPACT II, RESTORE, and EPILOG trials into perspective. American Journal of Cardiology 78, 3540.CrossRefGoogle ScholarPubMed
Theroux, P (1998) Oral inhibitors of platelet membrane receptor glycoprotein IIb/IIIa in clinical cardiology: issues and opportunities. American Heart Journal 135, S107S112.CrossRefGoogle ScholarPubMed
Väänänen, HK & Horton, M (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. Journal of Cell Science 108, 27292732.CrossRefGoogle ScholarPubMed
Wang, W, Borchardt, RT & Wang, B (2000) Orally active peptidomimetic RGD analogs that are glycoprotein IIb/IIIa antagonists. Current Medicinal Chemistry 7, 437453.CrossRefGoogle ScholarPubMed
Whyte, MP (1993) Carbonic anhydrase II deficiency. Clinical Orthopaedics 294, 5263.CrossRefGoogle Scholar
Yacyshyn, BR, Bowen-Yacyshyn, MB, Jewell, L, Tami, JA, Bennett, CF, Kisner, DL & Shanahan, WR (1998) A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease. Gastroenterology 114, 11331142.CrossRefGoogle ScholarPubMed
Yamamoto, M, Fisher, JE, Gentile, M, Seedor, JG, Leu, CT, Rodan, SB & Rodan, GA (1998) The integrin ligand echistatin prevents bone loss in ovariectomized mice and rats. Endocrinology 139, 14111419.CrossRefGoogle ScholarPubMed