Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-13T15:41:17.875Z Has data issue: false hasContentIssue false

X-ray jets and nuclear emission in low redshift early-type galaxies

Published online by Cambridge University Press:  24 March 2015

Christine Jones
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA email: [email protected]
William Forman
Affiliation:
Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA email: [email protected]
Eugene Churazov
Affiliation:
Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. 1, Garching, Germany email: [email protected]
Paul Nulsen
Affiliation:
Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to its high angular resolution, the Chandra Observatory has allowed the discovery and detailed study of extragalactic X-ray jets. Although supermassive black holes are regularly found in the cores of massive galaxies and X-ray emission is detected from ~80% of these, X-ray and radio jets are only detected in a small fraction of “normal” galaxies. X-ray jets are either single-sided or double-sided and, with only one possible exception, are found to have radio emission. However many radio jets are not detected in current X-ray observations. The expanding jets produce cavities in the surrounding hot gas in the galaxy halos. By determining how much gas has been pushed out of these cavities, we can determine the mechanical energy and power of the jet.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Baldi, A., Forman, W., Jones, C., et al. 2009, ApJ, 707, 1034Google Scholar
Bogdan, A., et al. 2014, ApJ (Letters), 782, 19Google Scholar
Croston, J., Kraft, R., & Hardcastle, M. 2007, ApJ, 686, 911Google Scholar
David, L., Jones, C., Forman, W., et al. 2009, ApJ, 705, 624Google Scholar
Dunn, R. & Fabian, A. 2006, MNRAS, 373, 959Google Scholar
Emonts, B., Burnett, C., Morganti, R., & Struve, C. 2012, MNRAS, 421, 1421Google Scholar
Feigelson, E., Schreier, E., Delvaille, J., et al. 1981, ApJ, 251, 31CrossRefGoogle Scholar
Finoguenov, A., Ruszkowski, M., Jones, C., et al. 2008, ApJ, 660, 191Google Scholar
Hardcastle, M. J., Worrall, D. M., Birkinshaw, M., et al. 2002, MNRAS, 334, 182Google Scholar
Harris, D., Hjorth, J., Sadun, A., Silverman, J., & Vestergaard, M. 1999, ApJ, 518, 213Google Scholar
Jones, C., Forman, W., Vikhlinin, A., et al. 2002, ApJ (Letters), 567, 115Google Scholar
Kraft, R., et al. 2000, ApJ (Letters), 531, 9Google Scholar
Laing, R. A., Canvin, J. R., Cotton, W. D., & Bridle, A. H. 2006, MNRAS (Letters), 368, 48Google Scholar
Lanz, L., Jones, C., Forman, W., Ashby, M., Kraft, R., & Hickox, R. 2010, ApJ, 721, 1702Google Scholar
Machacek, M., Nulsen, P., Jones, C., & Forman, W. 2006, ApJ, 648, 947Google Scholar
Massaro, F., et al. 2012, ApJS, 203, 31Google Scholar
Massaro, F., Harris, D., Tremblay, G., et al. 2013, ApJS, 206, 7Google Scholar
McNamara, B., et al. 2000, ApJ (Letters), 534, 135Google Scholar
Nulsen, P., et al. 2009, AIPC, 1201, 198Google Scholar
O'Sullivan, E., et al. 2011, MNRAS, 416, 2916Google Scholar
Randall, S., et al. 2011, ApJ, 726, 86Google Scholar
Schreier, E., Gorenstein, P., & Feigelson, E. 1982, ApJ, 261, 42Google Scholar
Schwartz, D., et al. 2000, ApJ (Letters), 540, 69CrossRefGoogle Scholar
Skrutskie, M., et al. 2011, ApJS, 131, 1163Google Scholar
Willingale, R. 1981, MNRAS, 194, 359Google Scholar
Worrall, D. M. 2009 A&AR, 17, 1Google Scholar
Worrall, D. M., Birkinshaw, M., Laing, R. A., et al. 2007, MNRAS, 380, 2CrossRefGoogle Scholar
Worrall, D. M., Birkinshaw, M., O'Sullivan, E., et al. 2010 MNRAS, 408, 701Google Scholar