Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T00:15:56.810Z Has data issue: false hasContentIssue false

Type Ia supernova sub-classes and progenitor origin

Published online by Cambridge University Press:  09 October 2020

Ashley J. Ruiter*
Affiliation:
School of Science, University of New South Wales Canberra The Australian Defence Force Academy, 2600 ACT, Canberra, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a short review on the current state of SN Ia progenitor origin. Type Ia supernova explosions (meaning thermonuclear disruption of a white dwarf) are observed to be widely diverse in peak luminosity, lightcurve width and shape, spectral features, and host stellar population environment. In the last decade alone, theoretical simulations and observational data have come together to seriously challenge the long-standing paradigm that all SNe Ia arise from explosions of Chandrasekhar mass white dwarfs. In this review I highlight some of the major developments (and changing views) of our understanding of the nature of SN Ia progenitor systems. I give a brief overview of binary star configurations and their plausible explosion mechanisms, and infer links between some of the various (observationally-categorized) SN Ia sub-classes and their progenitor origins from a theoretical standpoint.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abt, H. A. 1983, ARA&A, 21, 343CrossRefGoogle Scholar
Arnett, W. D. 1979, ApJ, 230, L37CrossRefGoogle Scholar
Arnett, W. D., Truran, J. W., & Woosley, S. E. 1971, ApJ, 165, 8710.1086/150878CrossRefGoogle Scholar
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407CrossRefGoogle Scholar
Belczynski, K., Kalogera, V., Rasio, F. A., et al. 2008, ApJS, 174, 223CrossRefGoogle Scholar
Bianco, F. B., Howell, D. A., Sullivan, M., et al. 2011, ApJ, 741, 20CrossRefGoogle Scholar
Bildsten, L., Shen, K. J., Weinberg, N. N., et al. 2007, ApJ, 662, L95CrossRefGoogle Scholar
Cescutti, G. & Kobayashi, C. 2017, A&A, 607, A23Google Scholar
Chiosi, E., Chiosi, C., Trevisan, P., et al. 2015, MNRAS, 448, 2100CrossRefGoogle Scholar
Chiotellis, A., Schure, K. M., & Vink, J. 2012, A&A, 537, A139Google Scholar
Claeys, J. S. W., Pols, O. R., Izzard, R. G., et al. 2014, A&A, 563, A83Google Scholar
Crocker, R. M., Ruiter, A. J., Seitenzahl, I. R., et al. 2017, Nature Astronomy, 1, 0135CrossRefGoogle Scholar
Côté, B., Denissenkov, P., Herwig, F., et al. 2018, ApJ, 854, 10510.3847/1538-4357/aaaae8CrossRefGoogle Scholar
D’Andrea, C. B., Smith, M., Sullivan, M., et al. 2018, arXiv e-prints,arXiv:1811.09565Google Scholar
Dan, M., Rosswog, S., Brüggen, M., et al. 2014, MNRAS, 438, 14CrossRefGoogle Scholar
De, K., Kasliwal, M. M., Polin, A., et al. 2019, ApJ, 873, L18CrossRefGoogle Scholar
Di Stefano, R. 2019, AAS/High Energy Astrophysics Division, 112.72Google Scholar
Drout, M. R., Soderberg, A. M., Mazzali, P. A., et al. 2013, ApJ, 774, 58CrossRefGoogle Scholar
Fink, M., Röpke, F. K., Hillebrandt, W., et al. 2010, A&A, 514, A53Google Scholar
Fink, M., Kromer, M., Hillebrandt, W., et al. 2018, A&A, 618, A124Google Scholar
Fisher, R., Mozumdar, P., & Casabona, G. 2019, ApJ, 876, 6410.3847/1538-4357/ab15d8CrossRefGoogle Scholar
Flörs, A., Spyromilio, J., Taubenberger, S., et al. 2019, MNRAS, 2650Google Scholar
Foley, R. J., McCully, C., Jha, S. W., et al. 2014, ApJ, 792, 29CrossRefGoogle Scholar
Friedmann, M. & Maoz, D. 2018, MNRAS, 479, 3563CrossRefGoogle Scholar
Ganeshalingam, M., Li, W., Filippenko, A. V., et al. 2012, ApJ, 751, 142CrossRefGoogle Scholar
Goliasch, J. & Nelson, L. 2015, ApJ, 809, 80CrossRefGoogle Scholar
Guillochon, J., Dan, M., Ramirez-Ruiz, E., et al. 2010, ApJ, 709, L64CrossRefGoogle Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ, 470, L97CrossRefGoogle Scholar
Hallakoun, N. & Maoz, D. 2019, MNRAS, 490, 657CrossRefGoogle Scholar
Hillebrandt, W., Kromer, M., Röpke, F. K., et al. 2013, Frontiers of Physics, 8, 116CrossRefGoogle Scholar
Hillman, Y., Prialnik, D., Kovetz, A., et al. 2016, ApJ, 819, 168CrossRefGoogle Scholar
Iben, I. & Renzini, A. 1983, ARA&A, 21, 271CrossRefGoogle Scholar
Iben, I. & Tutukov, A. V. 1984, ApJS, 54, 335CrossRefGoogle Scholar
Ilkov, M. & Soker, N. 2012, MNRAS, 419, 1695CrossRefGoogle Scholar
Jha, S. W. 2017, Handbook of Supernovae, 375CrossRefGoogle Scholar
Jha, S. W., Maguire, K., & Sullivan, M. 2019, Nature Astronomy, 3, 706CrossRefGoogle Scholar
Jones, S., Röpke, F. K., Pakmor, R., et al. 2016, A&A, 593, A72Google Scholar
Jordan, G. C., Perets, H. B., Fisher, R. T., et al. 2012, ApJ, 761, L23CrossRefGoogle Scholar
Kato, M., Hachisu, I., Kiyota, S., et al. 2008, ApJ, 684, 1366CrossRefGoogle Scholar
Khokhlov, A. M. 1991, A&A, 245, L25Google Scholar
Kirby, E. N., Xie, J. L., Guo, R., et al. 2019, ApJ, 881, 45CrossRefGoogle Scholar
Kromer, M., Sim, S. A., Fink, M., et al. 2010, ApJ, 719, 1067CrossRefGoogle Scholar
Kromer, M., Ohlmann, S. T., Pakmor, R., et al. 2015, MNRAS, 450, 3045CrossRefGoogle Scholar
Kromer, M., Fink, M., Stanishev, V., et al. 2013, MNRAS, 429, 2287CrossRefGoogle Scholar
Kushnir, D., Katz, B., Dong, S., et al. 2013, ApJ, 778, L3710.1088/2041-8205/778/2/L37CrossRefGoogle Scholar
Kuuttila, J., Gilfanov, M., Seitenzahl, I. R., et al. 2019, MNRAS, 484, 131710.1093/mnras/stz065CrossRefGoogle Scholar
Lesaffre, P., Han, Z., Tout, C. A., et al. 2006, MNRAS, 368, 187CrossRefGoogle Scholar
Li, C.-J., Kerzendorf, W. E., Chu, Y.-H., et al. 2019, ApJ, 886, 99CrossRefGoogle Scholar
Liu, Z.-W., Stancliffe, R. J., Abate, C., et al. 2015, ApJ, 808, 13810.1088/0004-637X/808/2/138CrossRefGoogle Scholar
Livio, M. & Riess, A. G. 2003, ApJ, 594, L93CrossRefGoogle Scholar
Livne, E. & Arnett, D. 1995, ApJ, 452, 62CrossRefGoogle Scholar
Maguire, K., Sim, S. A., Shingles, L., et al. 2018, MNRAS, 477, 3567CrossRefGoogle Scholar
Maoz, D. & Mannucci, F. 2012, PASA, 29, 447CrossRefGoogle Scholar
Maoz, D. & Badenes, C. 2010, MNRAS, 407, 1314CrossRefGoogle Scholar
Maoz, D. & Graur, O. 2017, ApJ, 848, 25CrossRefGoogle Scholar
Marquardt, K. S., Sim, S. A., Ruiter, A. J., et al. 2015, A&A, 580, A118Google Scholar
McCully, C., Jha, S. W., Foley, R. J., et al. 2014, Nature, 512, 54CrossRefGoogle Scholar
Miyaji, S., Nomoto, K., Yokoi, K., et al. 1980, PASJ, 32, 303Google Scholar
Moe, M., Kratter, K. M., & Badenes, C. 2019, ApJ, 875, 61CrossRefGoogle Scholar
Moe, M. & Di Stefano, R. 2017, ApJS, 230, 15CrossRefGoogle Scholar
Nelemans, G., Toonen, S., & Bours, M. 2013, Binary Paths to Type Ia Supernovae Explosions, 225 (IAUS 281)Google Scholar
Neunteufel, P., Yoon, S.-C., & Langer, N. 2017, A&A, 602, A55Google Scholar
Nomoto, K., Saio, H., Kato, M., et al. 2007, ApJ, 663, 1269CrossRefGoogle Scholar
Pakmor, R., Kromer, M., Taubenberger, S., et al. 2013, ApJ, 770, L8CrossRefGoogle Scholar
Pakmor, R., Kromer, M., Taubenberger, S., et al. 2012, ApJ, 747, L10CrossRefGoogle Scholar
Pakmor, R., Kromer, M., Röpke, F. K., et al. 2010, Nature, 463, 6110.1038/nature08642CrossRefGoogle Scholar
Pankey, T. 1962, Ph.D. ThesisGoogle Scholar
Panther, F. H., Seitenzahl, I. R., Ruiter, A. J., et al. 2019, PASA, 36, e031CrossRefGoogle Scholar
Perets, H. B., Gal-Yam, A., Mazzali, P. A., et al. 2010, Nature, 465, 322CrossRefGoogle Scholar
Phillips, M. M. 1993, ApJ, 413, L105CrossRefGoogle Scholar
Piersanti, L., Yungelson, L. R., & Tornambé, A. 2015, MNRAS, 452, 2897CrossRefGoogle Scholar
Raskin, C., Kasen, D., Moll, R., et al. 2014, ApJ, 788, 75CrossRefGoogle Scholar
Ritter, H. 1988, A&A, 202, 93Google Scholar
Röpke, F. K., Kromer, M., Seitenzahl, I. R., et al. 2012, ApJ, 750, L19CrossRefGoogle Scholar
Ruiter, A. J., Ferrario, L., Belczynski, K., et al. 2019, MNRAS, 484, 698CrossRefGoogle Scholar
Ruiter, A. J., Belczynski, K., Sim, S. A., et al. 2014, MNRAS, 440, L101CrossRefGoogle Scholar
Ruiter, A. J., Sim, S. A., Pakmor, R., et al. 2013, MNRAS, 429, 1425CrossRefGoogle Scholar
Ruiter, A. J., Belczynski, K., & Fryer, C. 2009, ApJ, 699, 2026CrossRefGoogle Scholar
Ruiter, A. J., Invited talk at Hydrogen Deficient Stars IV in Armagh, UK 2018. doi:10.5281/ZENODO.1436922CrossRefGoogle Scholar
Saio, H. & Nomoto, K. 1985, A&A, 150, L21Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444CrossRefGoogle Scholar
Sato, Y., Nakasato, N., Tanikawa, A., et al. 2016, ApJ, 821, 67CrossRefGoogle Scholar
Scalzo, R. A., Ruiter, A. J., & Sim, S. A. 2014, MNRAS, 445, 2535CrossRefGoogle Scholar
Schwab, J., Shen, K. J., Quataert, E., et al. 2012, MNRAS, 427, 190CrossRefGoogle Scholar
Seitenzahl, I. R., Ghavamian, P., Laming, J. M., et al. 2019, PRL, 123, 041101CrossRefGoogle Scholar
Seitenzahl, I. R., Cescutti, G., Röpke, F. K., et al. 2013, A&A, 559, L5Google Scholar
Shen, K. J., Boubert, D., Gänsicke, B. T., et al. 2018, ApJ, 865, 1510.3847/1538-4357/aad55bCrossRefGoogle Scholar
Shen, K. J., Quataert, E., & Pakmor, R. 2019, ApJ, 887, 180CrossRefGoogle Scholar
Shen, K. J. & Moore, K. 2014, ApJ, 797, 46CrossRefGoogle Scholar
Soker, N. 2019, arXiv e-prints,arXiv:1912.01550Google Scholar
Sparks, W. M., & Stecher, T. P. 1974, ApJ, 188, 14910.1086/152697CrossRefGoogle Scholar
Springel, V. 2010, MNRAS, 401, 791CrossRefGoogle Scholar
Taubenberger, S. 2017, Handbook of Supernovae, 317CrossRefGoogle Scholar
Thielemann, F.-K., Nomoto, K., & Yokoi, K. 1986, A&A, 158, 17Google Scholar
Timmes, F. X, Woosley, S. E., Hartmann, D. H., et al. 1996, ApJ, 464, 332CrossRefGoogle Scholar
Toonen, S., Voss, R., & Knigge, C. 2014, MNRAS, 441, 354 (2014b)CrossRefGoogle Scholar
Toonen, S., Perets, H. B., & Hamers, A. S. 2018, A&A, 610, A22Google Scholar
Toonen, S., Claeys, J. S. W., Mennekens, N., et al. 2014, A&A, 562, A14 (2014a)Google Scholar
Totani, T., Morokuma, T., Oda, T., et al. 2008, PASJ, 60, 1327CrossRefGoogle Scholar
van den Heuvel, E. P. J., Bhattacharya, D., Nomoto, K., et al. 1992, A&A, 262, 97Google Scholar
Venn, K. A., Jablonka, P., Hill, V., et al. 2016, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, 159 (IAUS 317)Google Scholar
Vennes, S., Nemeth, P., Kawka, A., et al. 2017, Science, 357, 680CrossRefGoogle Scholar
Wang, B., Zhou, W.-H., Zuo, Z.-Y., et al. 2017, MNRAS, 464, 3965CrossRefGoogle Scholar
Webbink, R. F. 1984, ApJ, 277, 355CrossRefGoogle Scholar
Whelan, J. & Iben, I. 1973, ApJ, 186, 1007CrossRefGoogle Scholar
Woods, T. E., Ghavamian, P., Badenes, C., et al. 2018, ApJ, 863, 120CrossRefGoogle Scholar
Woosley, S. E. & Kasen, D. 2011, ApJ, 734, 38CrossRefGoogle Scholar
Woosley, S. E. & Weaver, T. A. 1994, ApJ, 423, 371CrossRefGoogle Scholar
Yaron, O., Prialnik, D., Shara, M. M., et al. 2005, ApJ, 623, 398CrossRefGoogle Scholar
Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. 2007, MNRAS, 380, 933CrossRefGoogle Scholar
Yungelson, L., Livio, M., Tutukov, A., et al. 1995, ApJ, 447, 656CrossRefGoogle Scholar
Zenati, Y., Toonen, S., & Perets, H. B. 2019, MNRAS, 482, 1135CrossRefGoogle Scholar
Zhu, C., Pakmor, R., van Kerkwijk, M. H., et al. 2015, ApJ, 806, L1CrossRefGoogle Scholar