Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T21:14:37.659Z Has data issue: false hasContentIssue false

Radiation Hydrodynamical Models for Type I Superluminous Supernovae: Constraints on Progenitors and Explosion Mechanisms

Published online by Cambridge University Press:  28 July 2017

Ken’ichi Nomoto
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Hamamatsu Professor email: [email protected]
Alexey Tolstov
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Elena Sorokina
Affiliation:
Sternberg Astronomical Institute, M.V.Lomonosov Moscow State U., 119991 Moscow, Russia
Sergei Blinnikov
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia
Melina Bersten
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Instituto de Astrofisica La Plata, 1900 La Plata, Argentina
Tomoharu Suzuki
Affiliation:
College of Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physical origin of Type-I (hydrogen-less) superluminous supernovae (SLSNe-I), whose luminosities are 10 to 500 times higher than normal core-collapse supernovae, remains still unknown. Thanks to their brightness, SLSNe-I would be useful probes of distant Universe. For the power source of the light curves of SLSNe-I, radioactive-decays, magnetars, and circumstellar interactions have been proposed, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed multi-color light curve models by means of detailed radiation hydrodynamical calculations for various mass of stars including very massive ones and large amount of mass loss. We compare the rising time, peak luminosity, width, and decline rate of the model light curves with observations of SLSNe-I and obtain constraints on their progenitors and explosion mechanisms. We particularly pay attention to the recently reported double peaks of the light curves. We discuss how to discriminate three models, relevant models parameters, their evolutionary origins, and implications for the early evolution of the Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bersten, M., Benvenuto, O., Orellana, M., & Nomoto, K. 2016, ApJ 817, L8 CrossRefGoogle Scholar
Brown, P. J., Yang, Y., Cooke, J., et al. 2016, ApJ 828, 3 CrossRefGoogle Scholar
Chatzopoulos, E., et al. 2013, ApJ 773, 76 CrossRefGoogle Scholar
Chatzopoulos, E., Wheeler, J. C., Vinko, J., et al. 2016, ApJ 828, 94 CrossRefGoogle Scholar
Chevalier, R. A. & Irwin, C. M. 2011, ApJ (Letters) 729, L6 Google Scholar
Chevalier, R. A. 2012, ApJ (Letters) 752, L2 Google Scholar
Dong, S., Shappee, B. J., Prieto, J. L., et al. 2016, Science 351, 257 CrossRefGoogle Scholar
Gal-Yam, A. 2012, Science 337, 927 CrossRefGoogle Scholar
Godoy-Rivera, D., Stanek, K. Z., Kochanek, C. S., et al. 2016, MNRAS 466, 1428 CrossRefGoogle Scholar
Glebbeek, E., Gaburov, E., de Mink, S. E., et al. 2009, A&A 497, 255 Google Scholar
Greiner, J., Mazzali, P. A., Kann, D. A., et al. 2015, Nature 523, 189 CrossRefGoogle Scholar
Moriya, T., et al. 2013, MNRAS 428, 1020 CrossRefGoogle Scholar
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S. 2009, ApJ 706, 1184 CrossRefGoogle Scholar
Pastorello, A., Smartt, S., Botticella, M., et al. 2010, ApJ (Letters) 724, L16 Google Scholar
Portegies Zwart, S. F., van den Heuvel, E. P. J. 2007, Nature 450, 388 CrossRefGoogle Scholar
Quimby, R. 2012, IAU Symp. 279, Death of Massive Stars: Supernovae and Gamma-Ray Bursts, ed. Roming, P., et al., 22Google Scholar
Sorokina, E., Blinnikov, S., Nomoto, K., Quimby, R., & Tolstov, A. 2016, ApJ 829, 17 CrossRefGoogle Scholar
Suzuki, T. K., Nakasato, N., Baumgardt, H., et al. 2007, ApJ 668, L19 CrossRefGoogle Scholar
Taam, R. E. & Sandquist, E. L. 2000, ARAA 38, 113 CrossRefGoogle Scholar
Tolstov, A., Nomoto, K., Blinnikov, S., Sorokina, E., Quimby, R., & Baklanov, P. 2017, ApJ 835, 266 CrossRefGoogle Scholar
Woosley, S. E., Blinnikov, S. & Heger, A. 2007, Nature 450, 390 CrossRefGoogle Scholar
Yusof, N., Hirschi, R., Meynet, G., et al. 2013, MNRAS 433, 1114 CrossRefGoogle Scholar