Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-13T16:16:33.806Z Has data issue: false hasContentIssue false

The continuity principle in exponential type Orlicz spaces

Published online by Cambridge University Press:  22 January 2016

S. E. Graversen
Affiliation:
Institute of Mathematics, University of Aarhus, Ny Munkegade, 8000 Aarhus, Denmark
G. Peškir
Affiliation:
Institute of Mathematics, University of Aarhus, Ny Munkegade, 8000 Aarhus, Denmark, Department of Mathematics, University of Zagreb, Bijenička 30, 41000 Zagreb, Croatia
M. Weber
Affiliation:
I.R.M.A. Unité de Recherche associée C.N.R.S., 1, 7, rue René Descartes, 67084 Strasbourg, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this section we shall present some facts in the background of the problem under our next consideration. Let (X, A, μ) be a finite measure space, and let B be a Banach space with a norm ‖ • ‖. Let M(μ) denote the linear space of all μ-measurable functions from X into R, and let T be a linear operator from B into M (μ).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1995

References

[ 1 ] Atlagh, M. and Weber, M.. Théorèmes de densité pour des sommes de variables aléatoires, preprint (1993). To appear in the Proceedings of the Conference in Ergodic Theory and Probability, Columbus 1993.Google Scholar
[ 2 ] Conze, J. P., Convergence de moyennes ergodiques pour des sous-suites, Bull. Soc. Math. France, 35 (1973), 715.Google Scholar
[ 3 ] Dunford, N. and Schwartz, J. T., Linear Operators, Part 1: General Theory, Interscience Publ. Inc., New York, 1958.Google Scholar
[ 4 ] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, 1981.CrossRefGoogle Scholar
[ 5 ] Garsia, A. M., Topics in Almost Everywhere Convergence, Lectures in Advanced Mathematics 4, Markham Publishing Company. 1970.Google Scholar
[ 6 ] Halmos, P. R., Lectures on Ergodic Theory, Math. Soc. Japan, 1956.Google Scholar
[ 7 ] Hoffmann-Jørgensen, J., Function norms, Institute of Mathematics, University of Aarhus, Preprint Series, No. 40, (1990).Google Scholar
[ 8 ] Kolmogorov, A., Sur les fonctions harmoniques conjugées et les séries de Fourier, Fund. Math., 7(1925), 2328.Google Scholar
[ 9 ] Krengel, U., Ergodic Theorems, Walter de Gruyter & Co., Berlin, 1985.Google Scholar
[10] Marcus, M. B.and Pisier, G., Stochastic processes with sample paths in exponential Orlicz spaces, Probability in Banach spaces V, Lecture Notes in Math., 1153 (1985), 328358.Google Scholar
[11] Peskir, G., Best constants in Kahane-Khintchine inequalities in Orlicz spaces, Institute of Mathematics, University of Aarhus, Preprint Series, No. 10 (1992); J. Multivariate Anal., 45 (1993), 183216.Google Scholar
[12] Peskir, G., Maximal inequalities of Kahane-Khintchine’s type in Orlicz spaces, Institute of Mathematics, University of Aarhus, Preprints Series, No. 33 (1992); Math. Proc. Cambridge Philos. Soc, 115 (1994), 175190.Google Scholar
[13] Petersen, K., Ergodic Theory, Cambridge University Press. 1983.Google Scholar
[14] Sawyer, S., Maximal inequalities of weak type, Ann. Math., 84 (1966), 157173.Google Scholar
[15] Stein, E. M., On limits of sequences of operators, Ann. Math., 74 (1961), 140170.Google Scholar
[16] Weber, M., Une version fonctionelle du théoème ergodique ponctuel, C. R. Acad. Sci. Paris, t. 311, Série I, (1990), 131133.Google Scholar
[17] Weber, M., GC sets, Stein’s elements and matrix summation methods, Prepublication IRMA, No. 27, Strasbourg University, 1993.Google Scholar
[18] Weber, M., Operateurs réguliers dans les espaces L, Séminaire de Probabilities XXVII, Lecture Notes in Math., 1557 (1993), 207215.Google Scholar
[19] Zygmund, A., Trigonometric Series, Vol. 1, 11, Cambridge Univ. Press, New York, 2nd ed., 1959.Google Scholar