We are exploring high density information storage systems based on organometallic materials. Silver and copper salts of tetracyanoquinodimethane (TCNQ) and its derivatives exhibit an electrical and optical field induced reversible switching phenomenon. We have demonstrated a field-induced, charge-transfer reaction driven by the electric field at the STM tip when the field generated by the STM exceeds the switching threshold of the organic charge-transfer complex. The phase transition induced by the STM tip appears as nanometer-sized domains on the metal-TCNQ and derivatives surface. We also have shown this phase transition occur by means of optical laser irradiation. This paper discusses our plans to combine our research results in optical switching with the scanning near-field optical microscope (NSOM) to develop a very high density optical memory system. In order toassess the feasibility of this, we performed a series of experiments aimed at determining the limitations of information storage using this class of organic charge transfer complexes.