Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T00:26:19.895Z Has data issue: false hasContentIssue false

Update On Synchrotron Radiation TXRF: New Results

Published online by Cambridge University Press:  10 February 2011

S. Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
P. Pianetta
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
S. Ghosh
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
N. Takaura
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
C. Wiemer
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
A. Fischer-Colbrie
Affiliation:
Hewlett-Packard Co., Palo Alto, CA 94301
S. Laderman
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
A. Shimazaki
Affiliation:
IBM Research Laboratory, Hopewell Junction, NY 12533
A. Waldhauer
Affiliation:
Toshiba Corp., Kawasaki., JAPAN
M. A. Zaitz
Affiliation:
Applied Materials, 350 Bowers Ave., Santa Clara, CA 95051
Get access

Abstract

Synchrotron-based total-reflection x-ray fluorescence(SR-TXRF) has been developed as a leading technique for measuring wafer cleanliness. It holds advantages over other techniques in that it is non-destructive and allows mapping of the surface. The highest sensitivity observed thus far is 3x108 atoms/cm 2 (- 3fg) for 1000 second count time. Several applications of SR-TXRF are presented which take advantage of the energy tunability of the synchrotron source or the mapping capability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Diebold, A.C. and Monahan, K., Solid State Tech. 41, 50 ( 1998)Google Scholar
2. Shimazaki, A., Electrochem. Soc. Syp. Proc. for Defects in Si II, Wash. D.C., May 5-10, 1991; ECS vol. 91–9, 47 (1991)Google Scholar
3. Bertin, P., Principles of X-ray Spectrometric Analysis(Plenum, New York, 1975)Google Scholar
4. Klockenkaimper, R., Total Reflection X-ray Fluorescence Analysis (John Wiley & Sons, New York, 1997)Google Scholar
5. Born, I. and WVolf, E. , Principles of Optics (Pergamon, New York 1975)Google Scholar
6. Brennan, S. , Tompkins, W., Takaura, N., Pianetta, P., Laderman, S.S., Fischer-Colbrie, A. Kortright, J.B., Madden, M.C. and Wherry, D.C., Nucl. Instrum. & Meth. A 347, 417 (1994)Google Scholar
7. Pianetta, P., Takaura, N., Brennan, S., ompkins, WV T., Laderman, S.S., Fischer-Colbrie, A., Shimazaki, A., Miyazaki, K., Madden, M., Wherry, D.C. and Kortright, J.B., Rev. Sci. Instrum. 66, 1293 ( 1995)Google Scholar
8. Fischer-Colbrie, A., Laderman, S.S., Brennan, S., Ghosh, S., Takaura, N., Pianetta, P.. Shimazaki, A., Waldhauer, A., Wherry, D. and Barkan, S., Mat. Res. Soc. Symp. Proc. 477, 403 (1997)Google Scholar
9. See, for instance, Resonant Anomalous X-ray Scattering: Theory and Applications Materlik, G., Sparks, C.J. and Fischer, K., eds., North-Holland (1994).Google Scholar