Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T10:38:29.808Z Has data issue: false hasContentIssue false

Tunnel Type Magnetoresistance in Electron Beam Deposited Films of Compositions (Co0.5Fe0.5)x(Al2O3)(100-x) (7 ≤ x ≤ 52)

Published online by Cambridge University Press:  10 February 2011

H.R. Khan
Affiliation:
FEM, Materials Physics Department, 73525 Schwäbisch Gmünd and Department of Physics, University of Tennessee, Knoxville TN. U.S.A
A. Ya Vovk
Affiliation:
Institute of Magnetism, 36-b Vernadskystr. 252142 Kiev, Ukraine
A.F. Kravets
Affiliation:
Institute of Magnetism, 36-b Vernadskystr. 252142 Kiev, Ukraine
O.V. Shipil
Affiliation:
Institute of Magnetism, 36-b Vernadskystr. 252142 Kiev, Ukraine
A.N. Pogoriliy
Affiliation:
Institute of Magnetism, 36-b Vernadskystr. 252142 Kiev, Ukraine
Get access

Abstract

A series of 400 nm thick metal-insulator films of compositions (Co50Fe50)x(Al2O3(100-x) (7 ≤ x ≤ 52; x is in vol.%) are deposited on glass substrates using dual electron beam evaporation technique. The films are nanocrystalline with crystallite sizes of 1-3 nm. Resistivity of the films varies as a function of (I/T)0.5 showing a tunneling type behaviour. The films show isotropic and negative magnetoresistance (GMR). A film of composition (Co50Fe50)82.5(Al2O3)17.5 show maximum tunneling magnetoresistance (TMR) of 7.2% at room temperature and in a magnetic field of 8.2 kOe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maekawa, S. and Gafvert, U., IEEE Trans. Magn. 18, 707 (1982).Google Scholar
2. Fujimori, H., Mitani, S., Ohnuma, S., Mater. Sci. Eng. B 31, 219 (1995).Google Scholar
3. Mitani, S., Fujimori, H., Ohnuma, S., J. Magn. Magn. Mater. 165, 141 (1997).Google Scholar
4. Honda, S., Ikada, T., Nawate, M., Tokumoto, M., Phys. Rev. B 56, 14566 (1997).Google Scholar
5. Abeles, B., Sheng, P., Coutts, M.D., Arie, Y., Adv. Phys. 24, 401 (1975).Google Scholar
6. Westwood, W.D., Reactive sputtering in: Francombe, M.H., Vossen, J.L. (Eds.), Physics of Thin Films, Academic Press, New York, 1989, vol. 14, Page 1.Google Scholar
7. Vovk, A.Y., Filatov, A.V., Met. Phys. Adv. Tech. 15 (7).Google Scholar
8. Butilenko, A.K., Vovk, A.Ya., Khan, H.R., Surf. and Coating Techn. 107, 197 (1998).Google Scholar
9. McLachlan, D.S., Blaszkiewicz, M., Neownham, R.E., J. Am. Ceram. Soc. 73 (8), 2187 (1990).Google Scholar
10. Vovk, A.Ya., Zrazhevskiy, V.A., l Ukr. Fiz. Zhurn. 39, 728 (1994).Google Scholar
11. Furubayashi, T. and Nakatani, I., J. Appl. Phys. 79, 6258 (1996).Google Scholar