Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T18:50:50.000Z Has data issue: false hasContentIssue false

Transversal Type Piezoelectric Resonator Using ZnO Thin Film on Micro-Fabricated Elinver (Fe-Ni-Cr-Ti) Alloy

Published online by Cambridge University Press:  10 February 2011

Y. Yoshino*
Affiliation:
R&D Division, Murata Mfg. Co., Ltd., Yokohama, Kanagawa, Japan, [email protected]
Get access

Abstract

A transversal type 3.58MHz piezoelectric resonator has been fabricated using piezoelectric ZnO thin film on ELINVER (Fe-Ni-Cr-Ti ) alloy. The ZnO/ELINVER structure piezoelectric resonator has been designed to have 2 ppm temperature coefficient of frequency (TCF) per degree from -20 degrees to 80 degrees centigrade. The temperature coefficient of ELINVER alloy can be controlled to cancel the TCF of ZnO thin film by heat annealing. The ZnO thin film on ELINVER alloy shows c-axis orientation. The c-axis orientation of the ZnO thin film is strongly influenced by the surface roughness of the ELINVER alloy. The wet etching process has been adopted to shape the resonator made from ELINVER alloy substrate. The cross section of the resonator is a structure tapered about 10 degrees, created using different sized photo masks on each side of the ELINVER surface. The tapered cross section of the transversal type resonator greatly improves the frequency characteristics of the resonator. The electrical characteristics of the resonator after the improvement include a resonance frequency of 3.58MHz trimmed by a YAG laser, and resonance resistance of about 200 Ω. The temperature coefficient of frequency is about 1.5 ppm per degree at a temperature range of-20 degrees to 80 degrees centigrade.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yamamoto, T., Shiosaki, T. and Kawabata, A., J. Appl. Phys. 51, 3113 (1980).Google Scholar
2 Yoshino, Y., Kadota, M., leki, H., Kasanami, T. and Wakino, K. in 8th International Symposium of Plasma Chemistry (Proc. 2, Tokyo, Japan, 1987), 22712276.Google Scholar
3 Minami, T., Nanto, H. and Takata, S., Jpn. J. Appl. Phys. 23, 280 (1984).Google Scholar
4 Larson, J. D., D.K.Winslow and Ziteili, L. T., IEEE Trans, Sonics & Ultrason. SU 19,18 (1972).Google Scholar
5 Minakata, M., Chubachi, N. and Kikuchi, Y., Jpn. J. Appl. Phys.Short Notes, 12, 474 (1973).Google Scholar
6 Shiosaki, T., Ohnishi, S. and Kawabata, A., J. Appl. Phys. 50, 3113 (1979).Google Scholar
7 Hata, T., Minamikawa, T., Noda, E., Morimoto, O. and Hada, T., Jpn. J. Appl. Phys. Suppl. 18, 219 (1979)Google Scholar
8 Kadota, M., Kasanami, T. and Minakata, M., Jpn. J. Appl. Phys. 32, 2341 (1993).Google Scholar
9 Hayamizu, S., Tabata, H. and Kawai, T., J. Appl. Phys. 80, 787 (1996).Google Scholar
10 Koike, J., Shimoe, K. and leki, H., Jpn. J. Appl. Phys. 32, 2337 (1993).Google Scholar
11 Kadota, M. and Minami, K., Jpn. J. Appl. Phys. 34, 2698 (1995).Google Scholar
12 Fujishima, S., Kasanami, T. and Nakamura, T., Jpn. J. Appl. Phys. Suppl. 22, 150 (1983).Google Scholar
13 Fujishima, S., Kasanami, T. and Nakamura, T., Jpn. J. Appl. Phys. Suppl. 24, 133 (1984).Google Scholar
14 Yoshino, Y., Inoue, K., Takeuchi, M. and Ohwada, K. in 4th international Symposium of Sputtering and Plasma Processes (Proc., Kanazawa, Japan, 1997), 157162.Google Scholar
15 Yoshino, Y., Iwasa, S., Aoki, H., Deguchi, Y., Yamamoto, Y. and Ohwada, K. in Thin Films -Structure and Morphology, edited by Moss, S. C., Ila, D, Cammarata, R. C., Chason, E. H., Einstein, T. L. and Williams, E. D. ( Mater. Res. Soc. Proc. 441, Pittsburgh, PA, 1996), 241246.Google Scholar