Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:35:48.220Z Has data issue: false hasContentIssue false

Thermoelectric Properties of PbSe Epitaxial Thin Films and PbSe/EuS Heterostructures

Published online by Cambridge University Press:  21 March 2011

Mildred S. Dresselhaus
Affiliation:
MIT, Dept of Physics, Cambridge, MA, USA
Gene Dresselhaus
Affiliation:
MIT, Dept of Physics, Cambridge, MA, USA
Elena I. Rogacheva
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Tatyana V. Tavrina
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Sergey N. Grigorov
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Konstantin A. Nasedkin
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Valentine V. Volobuev
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Alexander Yu. Sipatov
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Get access

Abstract

Systematic investigations were performed of the thickness dependences of the thermoelectric properties of PbSe thin films, freshly prepared and exposed to air at room temperature. It is shown that oxidation leads to a sharp change in the thermoelectric properties of the PbSe films including a change in the sign of the dominant carrier type from n-type to p- type at d ≤ 80 nm. Using a two carrier model for thin films (d < 50 nm) and a two-layer model for thick films (d > 50 nm) allows us to give a satisfactory qualitative interpretation of the observed experimental dependences of the thermoelectric properties on the film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mahan, G.D., Solid State Phys. 51, 81 (1997).Google Scholar
2. Goldsmid, H.J., Electronic Refrigeration (Pion Limited, 1986).Google Scholar
3. Harman, T.C., Spears, D.L., and Manfra, M.J., J. Electron. Mater. 25 (7), 1121 (1996).Google Scholar
4. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S., Phys. Rev. B 53 (16), R10493 (1996).Google Scholar
5. Harman, T.C., Spears, D.L., and Walsh, M.P., J. Electron. Mater. 28 (1), L1 (1999).Google Scholar
6. Beyer, H., Lambrecht, A., Nurnus, J. et al. Proceedings of the 18th Int. Conference on Thermoelectrics (Baltimore, USA, 1999), p. 687.Google Scholar
7. Sipatov, A.Yu., Volobuev, V.V., Fedorov, A.G., Rogacheva, E.I., and Krivulkin, I.M., Proceedings of the 18th Int. Conference on Thermoelectrics (Baltimore, USA, 1999), p. 198.Google Scholar
8. Harman, T.C., Taylor, P.J., Spears, D.L., and Walsh, M.P., Proceedings of the 18th Int. Conference on Thermoelectrics (Baltimore, USA, 1999), p. 280.Google Scholar
9. Harman, T.C., Taylor, P.J., Spears, D.L., and Walsh, M.P., J. Electr. Mater. Lett. 29, L1 (2000).Google Scholar
10. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47 (19), 12727 (1993).Google Scholar
11. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47 (19), 16631 (1993).Google Scholar
12. Hicks, L.D., Harman, T.C., Dresselhaus, M.S., Appl. Phys. Lett. 63, 3230 (1993).Google Scholar
13. Ravich, Yu.I., Efimova, B.A., Smirnov, I.A., Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970), pp. 156227.Google Scholar
14. Boikov, Yu.A., Danilov, V.A., Gribanova, O.S., Derjagina, I.M., Proceedings of the 14th Int. Conference on Thermoelectrics (St.-Petersburg, Russia, 1996), p. 174.Google Scholar
15. Veis, A.N., Fizika i Tekhnika Poluprovodnikov 31 (12), 1419 (1997).Google Scholar
16. Dashevsky, Z., Proc.16th Int. Conf. on Thermoelectrics (Dresden, Germany, 1997), p. 255.Google Scholar
17. Neustroev, L.N. and Osipov, V.V., Fizika i Tekhnika Poluprovodnikov 20 (1), 55 (1986).Google Scholar
18. Rogacheva, E.I., Krivulkin, I.M., Nashchekina, O.N., Sipatov, A.Yu., Volobuev, V.V., Dresselhaus, M.S., Appl. Phys. Lett. 78, 1661 (2001).Google Scholar
19. Brodsky, M.H. and Zemel, J.N., Phys. Rev. 155, 780 (1967).Google Scholar
20. Zemel, J.N., in Molecular Processes of Solid Surfaces, edited by Drauglis, E., Gretz, R.D., and Jaffee, R.I. (McGraw-Hill Co., New York, 1969), p.225.Google Scholar
21. Egerton, R.F. and Juhasz, C., Thin Solid Films 4, 239 (1969).Google Scholar
22. McLane, G. and Zemel, J.N., Thin Solid Films 7, 229 (1971).Google Scholar
23. Petritz, R.L., Phys. Rev. 110 (6), 1256 (1958).Google Scholar
24. McLane, G.F., J.Appl.Phys. 45 (7), 2926 (1974).Google Scholar
25. Palatnik, L.S., Sorokin, B.Ye., Pravdina, O.V., Izv. AN SSSR, Neorg. Mater. 17, 958 (1981).Google Scholar
26. Stauffer, D., Aharony, A., Introduction to Percolation Theory (Taylor & Fransis, London, Washington, DC, 1992), pp. 89114.Google Scholar