Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T15:44:15.388Z Has data issue: false hasContentIssue false

Theory of Electron Energy Loss Spectroscopy and its Application to Threading Edge Dislocations in GaN

Published online by Cambridge University Press:  21 March 2011

C. J. Fall
Affiliation:
School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
R. Jones
Affiliation:
School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
P. R. Briddon
Affiliation:
Department of Physics, University of Newcastle upon Tyne, Newcastle NE1 7RU, United Kingdom
A. T. Blumenau
Affiliation:
Theoretische Physik, Universität Paderborn, D-33098 Paderborn, Germany
T. Frauenheim
Affiliation:
Theoretische Physik, Universität Paderborn, D-33098 Paderborn, Germany
M. I. Heggie
Affiliation:
CPES, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
Get access

Abstract

The electronic structure of dislocations in GaN is controversial. Several experimental techniques such as carrier mobility studies and cathodoluminescence experiments have indicated that dislocations are charged while theoretical studies point to intrinsic states and/or point defect accumulation along the core as a source of electrical activity. Electron Energy Loss Spectroscopy (EELS) studies have the ability to probe the electronic structure of extended defects. Here we report rst principles calculations of the EELS spectrum applied to edge dislocations in GaN. It is found that the electrostatic potential at N atoms in the vicinity of the dislocation varies by the order of a volt and casts doubt on any simple interpretation of core loss spectroscopy. On the other hand, low loss spectroscopy leads directly to detailed information about any gap states. The low loss spectrum obtained by the theory is in good agreement with recent experimental work and indicates that threading dislocations in p-type GaN possess acceptor levels in the upper half of the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Electronic address: [email protected]

References

[1] Jain, S. C., Willander, M., Narayan, J., and Overstaeten, R. Van, J. Appl. Phys. 87, 965 (2000).Google Scholar
[2] Vennéguès, P., Beaumont, B., Vaille, M., and Gibart, P., Appl. Phys. Lett. 70, 2434 (1997).Google Scholar
[3] Lilienthal-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
[4] Xin, Y. et al., Appl. Phys. Lett. 72, 2680 (1998).Google Scholar
[5] Hsu, J. W. P. et al., Appl. Phys. Lett. 78, 3980 (2001).10.1063/1.1379789Google Scholar
[6] Schaadt, D. M., Miller, E. J., Yu, E. T., and Redwing, J. M., Appl. Phys. Lett. 78, 88 (2001).Google Scholar
[7] Cherns, D. and Jiao, C. G., Phys. Rev. Lett. 87, 205504 (2001).Google Scholar
[8] Im, H.-J. et al., Phys. Rev. Lett. 87, 106802 (2001).Google Scholar
[9] Elsner, J. et al., Phys. Rev. Lett. 79, 3672 (1997).Google Scholar
[10] Wright, A. F. and Grossner, U., Appl. Phys. Lett. 73, 2751 (1998).Google Scholar
[11] Leung, K., Wright, A. F., and Stechel, E. B., Appl. Phys. Lett. 74, 2495 (1999).Google Scholar
[12] Lee, S. M. et al., Phys. Rev. B 61, 16033 (2000).Google Scholar
[13] Northrup, J. E., Appl. Phys. Lett. 78, 2288 (2001).10.1063/1.1361274Google Scholar
[14] Nagayama, A. et al., to appear in phys. stat. sol. (unpublished).Google Scholar
[15] Gutiérrez-Sosa, A. et al., proceedings of the Royal Microscopic Society meeting, March 2001 (to be published).Google Scholar
[16] Batson, P. E., Phys. Rev. Lett. 83, 4409 (1999).Google Scholar
[17] Bruley, J. and Batson, P. E., Phys. Rev. B 40, 9888 (1989).Google Scholar
[18] Briddon, P. R. and Jones, R., Phys. Status Solidi B 217, 131 (2000).Google Scholar
[19] Bachelet, G. B., Hamann, D. R., and Schlüter, M., Phys. Rev. B 26, 4199 (1982).10.1103/PhysRevB.26.4199Google Scholar
[20] Xu, Y.-N. and Ching, W. Y., Phys. Rev. B 48, 4335 (1993).Google Scholar
[21] Wright, A. F. and Nelson, J. S., Phys. Rev. B 50, 2159 (1994).Google Scholar
[22] Leszczynski, M. et al., Appl. Phys. Lett. 69, 73 (1996).Google Scholar
[23] Singh, J., Physics of semiconductors and their heterostructures (McGraw-Hill, New York, 1993).Google Scholar
[24] Ueno, M. et al., Phys. Rev. B 49, 14 (1994).Google Scholar
[25] Ueno, M., Onodera, A., Shimomura, O., and Takemura, K., Phys. Rev. B 45, 10123 (1992).Google Scholar
[26] Bigger, J. R. K. et al., Phys. Rev. Lett. 69, 2224 (1992).10.1103/PhysRevLett.69.2224Google Scholar
[27] Elstner, M. et al., Phys. Rev. B 58, 7260 (1998).Google Scholar
[28] Noziéres, D. and Pines, D., Phys. Rev. 113, 1254 (1959).Google Scholar
[29] Bassani, G. F. and Parravicini, G. Pastori, in Electronic states and optical transitions in solids, Vol. 8 of International series of monographs in the science of the solid state, edited by Ballinger, R. A. (Pergamon Press, Oxford, 1975).Google Scholar
[30] Read, A. J. and Needs, R. J., Phys. Rev. B 44, 13071 (1991).Google Scholar
[31] Lambrecht, W. R. L. et al., Phys. Rev. B 51, 13516 (1995).Google Scholar
[32] Benedict, L. X. et al., Solid State Commun. 112, 129 (1999).Google Scholar
[33] Gutiérrez-Sosa, A. and Bangert, U., private communication (unpublished).Google Scholar