Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-21T16:18:22.963Z Has data issue: false hasContentIssue false

Temperature Dependence of Optical Properties and Minority Carrier Diffusion Length in a-SiGe:H,F

Published online by Cambridge University Press:  26 February 2011

R. Schwarz
Affiliation:
Physik-Department, Technische Universität München, West Germany
K. Dietrich
Affiliation:
Physik-Department, Technische Universität München, West Germany
S. Goedecker
Affiliation:
Physik-Department, Technische Universität München, West Germany
J. Kolodzey
Affiliation:
Department of Electrical Engineering, Princeton University Princeton NJ 08544, U.S.A. Department of Electrical Engineering, University of Illinois, Urbana-Champaign, Ill USA
D. Slobodin
Affiliation:
Department of Electrical Engineering, Princeton University Princeton NJ 08544, U.S.A. Polaroid Corp., Waltham, Mass., USA
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University Princeton NJ 08544, U.S.A.
Get access

Abstract

We report the temperature dependence of several optical parameters of thin films of hydrogenated and fluorinated amorphous silicon alloys (a-SiGe:H,F) between 5 and 95 °C. The absorption coefficient near the optical band gap Eg increases with temperature. From this increase we calculate a temperature coefficient for Eg of −4.5×10−4 eV/K, which is essentially independent of band gap The concomittant change of index of refraction n was determined in the near infrared region from the interference pattern in the reflection spectra. The temperature coefficient dn/n/dT is 0.9×10−4 K−1 for un-alloyed a-Si:H,F and increases with increasing Ge atomic fraction. The changes of Eg and n with temperature are consistent with a simple quantummechanical description of the complex dielectric constant. We also report the temperature dependence of the minority carrier diffusion length in a-SiGe:H,F.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cody, G.D. in “Semiconductors and Semimetals”, Vol.21, Part B, Pankove, J.I. ed., (Academic Press, New York, 1984), p. 11.Google Scholar
2. Bagley, B.G., Aspnes, D.E., Celler, G.K., and Adams, A.C. in “Laser and Electron-beam Interactions with Solids”, Appleton, B.R. and Celler, G.K. eds., (Elsevier, 1982), p. 483.Google Scholar
3. Freeman, E.C. and Paul, W., Phys. Rev. B20, 716 (1979).Google Scholar
4. Cody, G.D., Tiedje, T., Abeles, B., Brooks, B.G., and Goldstein, Y., Phys. Rev. Lett. 47, 1480 (1981).Google Scholar
5. Persans, P.D., Ruppert, A.F., Cody, G.D., Brooks, B.G., and Lanford, W., AIP Conf. Proc. 120, 349 (1984).Google Scholar
6. Persans, P.D., Ruppert, A.F., Cody, G.D. and Brooks, B.G., Sol. Stat. Comm. 54, 461 (1985).Google Scholar
7. Ziman, J. M, ”Principles of the Theory of Solids” (Cambridge University Press, Cambridge, 1972), p. 261.Google Scholar
8. Goldstein, B., Dresner, J. and Szostak, D.J., Phil. Mag. B46, 63 (1982).Google Scholar
9. Schwarz, R., Kolodzey, J., Slobodin, D., Aljishi, S., Shen, D.S., and Wagner, S., to be published.Google Scholar
10. Kolodzey, J., Aljishi, S., Schwarz, R., Slobodin, D., and Wagner, S., J. Vac. Sci. Technol. A4, 2499 (1986).Google Scholar
11. Slobodin, D., Kolodzey, J., Aljishi, S., Okada, Y., Chu, V., Shen, D.S., Schwarz, R., and Wagner, S., 18th IEEE PVSC, Las Vegas 1985, p. 1505.Google Scholar
12. Schwarz, R., Slobodin, D., and Wagner, S., Appl. Phys. Lett. 47, 740 (1985).Google Scholar
13 Dragone, T., Wagner, S. and Moustakas, T.D., Techn. Digest of the Int. PVSEC-I, Kobe, Japan, 1984, p. 71.Google Scholar
14. Persans, P.D. and Ruppert, S.F., Appl. Phys. Lett. 59, 271 (1986).Google Scholar
15. Nagels, P. in “Amorphous Semiconductors”, Topics in Appl. Phys., Vol.36, Brodsky, M.H. ed., (Springer, Berlin, 1979), p. 113.Google Scholar
16. Moore, A., J. Appl. Phys. 54, 222 (1983).Google Scholar
17. Kamela, Z.N., Aljishi, S., Dawson, R.M.A., Slobodin, D., and Wagner, S., Mat. Lett. 4, 320 (1986).Google Scholar
18. Landolt-Bornstein, “Numerical Data and Functional Relationships in Science and Technology”, Vol.17, Madelung, O., Schulz, M., Weiss, H. eds., (Springer, Berlin, 1982), p. 10.Google Scholar