Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T06:39:19.488Z Has data issue: false hasContentIssue false

A Systematic Study of the Effects of Metal Substitutions for Cu in Yba2(Cu1-XMX)3O7-δ, M=Fe, Co, Al, Ga, Cr, Ni, and Zn

Published online by Cambridge University Press:  28 February 2011

Youwen Xu
Affiliation:
Materials Science Division, Brookhaven National Lab. Upton, NY 11973
A. R. Moodenbaugh
Affiliation:
Materials Science Division, Brookhaven National Lab. Upton, NY 11973
Y. L. Wang
Affiliation:
Materials Science Division, Brookhaven National Lab. Upton, NY 11973
M. Suenaga
Affiliation:
Materials Science Division, Brookhaven National Lab. Upton, NY 11973
R. L. Sabatini
Affiliation:
Materials Science Division, Brookhaven National Lab. Upton, NY 11973
Get access

Abstract

A series of polycrystalline YBa2(Cu1‐xMx)3O7‐δ (1:2:3) samples with a typical grain size > 10μm was prepared using well controlled and reproducible precedures. This relatively large grain size allowed microprobe studies of individual grains to determine M content of the 1:2:3 phase. Solubility limits of substitutions for Cu in these samples are estimated. Superconducting transition temperatures and lattice parameters are presented. In the case of Ga, microprobe studies show no evidence for Ga content of 1:2:3 above x=0.01. Preliminary studies show no evidence for solid solution above x=0.01 when substituting Mn, Cr, Zr, and Ti for Cu in 1:2:3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R.L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
2 Tarascon, J. M., Barboux, P., Miceli, P. F., Greene, L. H., Hull, G. W., Eibschultz, M., and Sunshine, S. A., Phys. Rev. B. 37, 7458 (1988).Google Scholar
3 Takayama‐Muromachi, E., Uchida, Y., and Kato, K., Jpn. J. Appl. Phys. 26, L2087 (1987).Google Scholar
4 Youwen Xu, R. L., Sabatini, A. R., Moodenbaugh, , and Suenaga, M., Phys. Rev. B38, 7084 (1988). (See also references cited therein).Google Scholar
5 Youwen Xu, M. Suenaga, Tafto, J. Sabatini, R. L., Moodenbaugh, A. R., and Zolliker, P., Phys. Rev. B 39, 6667 (1989). (See also references cited therein.)Google Scholar
6 Zolliker, P., Cox, D. E., Tranquada, J. M., and Shirane, G., Phys. Rev. B 38, 6575 (1988). (See also references cited therein).Google Scholar
7 Siegrist, T., Schneemeyer, L. F., Waszczak, J. V., Singh, N. P., Opila, R. L., Batlogg, B., Rupp, L. W., and Murphy, D. W., Phys. Rev. B 36, 8365 (1987).Google Scholar
8 Howland, R. S., Geballe, T. H., Laderman, S. S., Fischer‐Colbrie, A., Scott, M., Tarascon, J. M., and Barboux, P., Phys. Rev. B 39, 2932 (1989).Google Scholar
9 Yang, C. Y., Wang, Y. L., Heald, S. M., Youwen Xu, , Moodenbaugh, A. R., Welch, D. O., and Suenaga, M., Abstract M7.88, this conference.Google Scholar