Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-26T18:17:29.695Z Has data issue: false hasContentIssue false

Synthesis of a MoSi2/SiC Composite in Situ Using a Solid State Displacement Reaction

Published online by Cambridge University Press:  25 February 2011

C. H. Henager JR.
Affiliation:
Pacific Northwest Laboratory, Battelle Blvd., Richland, WA 99352
J. L. Brimhall
Affiliation:
Pacific Northwest Laboratory, Battelle Blvd., Richland, WA 99352
J. P. Hirth
Affiliation:
Washington State University, Dept. of Mechanical and Materials Engr., Pullman, WA 99164
Get access

Abstract

Solid state displacement reactions are being studied at Pacific Northwest Laboratory (PNL) as a method of synthesizing intermetallic and ceramic composites in situ. A high-strength in situ composite of MoSi2/SiC was synthesized using a solid state displacement reaction between Mo2C and Si. Diffusion couples between Mo2C and Si processed at 1200°C revealed the formation of aligned SiC platelets in a MoSi2 matrix. In situ composites were also synthesized by blending Mo2C and Si powders and vacuum hot-pressing the powders at 1350°C for 2 h followed by 1 h at 1700°C. The resulting microstructure consisted of 1-μm diameter SiC particles (30 vol%) uniformly dispersed in a fine grained MoSi2 matrix. Densities of 5.53 g/cm3 were obtained along with a microhardness of 14.2 GPa. Bend bars and chevron-notched bars revealed a strength of 475 MPa and a fracture toughness of 6.7 MPa√m at room temperature. Bend strengths increased to 515 MPa at 1000°C and then decreased to 112 MPa at 1200°C. Measured fracture toughness increased to 10.5 MPa√m at 1050°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rapp, R. A., Ezis, A., and Yurek, G. J., Met. Trans., 4, 1283 (1973).Google Scholar
2. Yurek, G. J., Rapp, R. A., and Hirth, J. P., Met. Trans., 4, 1293 (1973).Google Scholar
3. Yurek, G. J., Rapp, R. A., and Hirth, J. P., Met. Trans. A, 10A, 1473 (1979).Google Scholar
4. Tangchitvittaya, C., Hirth, J. P., and Rapp, R. A., Met. Trans. A, 13A, 585 (1982).Google Scholar
5. Haggerty, J. S. and Chiang, Y. -M., Ceram. Eng. Sci. Proc., 11[7-8], 757 (1990).CrossRefGoogle Scholar
6. Claussen, N. and Jahn, J., J. Amer. Ceram. Soc., 63, 228 (1980).Google Scholar
7. Anseau, M. R., Leblud, C., Cambier, F., J. Mater. Sci. Lett., 2, 366 (1983).CrossRefGoogle Scholar
8. Yangyun, S. and Brook, R. J., Ceram. Int., 9, 39 (1983).Google Scholar
9. Boch, P. and Giry, J. P., Mater. Sci, and Eng., 71, 39 (1985).CrossRefGoogle Scholar
10. Mocellin, A. and Bayer, G., J. Mater. Sci., 20, 3697 (1985).Google Scholar
11. Pena, P., Miranza, P., Moya, J. S., and Aza, S. De, J. Mater. Sci., 20, 2011 (1985).Google Scholar
12. Pena, P., Miranza, P., Moya, J. S., and Aza, S. De, J. Mater. Sci., 20, 2702 (1985).CrossRefGoogle Scholar
13. Bayer, G. and Mocellin, A., Rev. Chimie Miner., 23, 80 (1986).Google Scholar
14. Miranza, P., Pena, P., Aza, S. De, Moya, J. S., Rincon, J. Ma, and Thomas, G., J. Mater. Sci., 22, 2987 (1985).Google Scholar
15. Martin, M. and Schmalzried, H., Ber. Bunsenges. Phys. Chem., 89, 124 (1985).Google Scholar
16. Backhaus-Ricoult, M. and Schmalzried, H., Ber. Bunsenges. Phys. Chem., 89, 1323 (1985).Google Scholar
17. Bao, G., Hutchinson, J. W., and McMeeking, R. M., Acta Metall. et Mater., 39, 1871 (1991).Google Scholar
18. Doherty, R. D., Physical Metallurgy, 3rd edition, Cahn, R. W. and Haasen, P., eds., p. 933, North-Holland, New York (1983).Google Scholar
19. Lee, E. W., Cook, J., Khan, A., Mahapatra, R., and Waldman, J., J. of Metals, 3, 54 (1991).Google Scholar
20. vanLoo, F. J. J., Smet, F. M., Rieck, G. D., and Verspui, G., High Temp.-High Press., 14, 25 (1982).Google Scholar
21. Carter, D. H., Gibbs, W. S., and Petrovic, J. J., Ceramic Materials and Components for Engines, Tennery, V. J., ed., p. 977, The American Ceramic Society, Westerville, OH (1989).Google Scholar
22. Umakoshi, Y., Sakagami, T., Hirano, T, and Yamane, T., Acta Metall. et Mater., 38, 909 (1990).Google Scholar