Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-13T19:27:23.675Z Has data issue: false hasContentIssue false

The Synthesis and Structure of New Perovskite-type Niobate Processed in Millimeter Wave Field

Published online by Cambridge University Press:  01 February 2011

Hanxing Liu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
Long Zou
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
Jian Zhou
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
Guangjiang Yuan
Affiliation:
The Institute of Electronics, Chinese Academy of Sciences, Beijing, 100080, P. R. China
Hua Hua
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
Dabing Luo
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
Jirun Luo
Affiliation:
The Institute of Electronics, Chinese Academy of Sciences, Beijing, 100080, P. R. China
Shixi Ouyang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
Get access

Abstract

In present paper a new niobate materials Ba5LixTixNb10-xO30 were synthesized by doping Li+ in the system BaO- TiO2- Nb2O5 in millimeter wave field. X-ray diffraction (XRD) quantitative and scanning transition spectroscopy (SEM) analysis were employed to study crystal structure and microstructure of reaction products. It was found that pure products could be obtained at temperature 900°, 8 min which is lower comparing with that by conventional method. The XRD data shown the crystal belongs to tetragonal tungsten bronze structure with space group P4bm. The grain size synthesized in millimeter wave field had smaller size, narrower distribution, better sinter-ability, and without hard agglomeration comparing whit that obtaining from conventional synthesis. At lower temperature Ba5LiTiNb9O30 is a tetragonal ferroelectric phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, H., Fang, L., Hong, X.K., Meng, F.C., Liu, H.X., Chin. J. of Inorg. Chem., 19, 1150(2003).Google Scholar
2. Clark, D. E., Folz, D. C., Schulz, R. L., Fathi, Z., and Cozzi, A. D., MRS Bull., 18, 41( 1993).Google Scholar
3. Liu, H. X., Liu, Z. J., Ouyang, S.X., Aata Chimica Sinica, 57, 72 (1999).Google Scholar
4. Liu, H.X., Li, Y. W., Ouyang, S.X., Science in China, A 40, 779 (1997).Google Scholar
5. Zhao, S.X., Liu, H.X., Ouyang, S.X., Functional Materials, 31, 233 (2000).Google Scholar
6. Makino, Y., Matsumoto, T., Journal of Materials Science,, 36, 693(2001)Google Scholar
7. Fliflet, A.W., Bruce, R.W., Kinkead, A. K., Fischer, R. P., Lewis, D. III, Rayne, R., Bender, B., Kurihara, L. K., Chow, G.-M., and Schoen, P. E., IEEE Trans. Plasma Sci., 24, 1041(1996).Google Scholar
8. Lewis, D. III, Rayne, R. J., Bender, B. A., Kurihara, L. K., Chow, G.-M., Fliflet, A., Kinkead, A., and Bruce, R., Nanostruct. Mat., 9, 97(1997).Google Scholar
9. Bruce, R.W., Fliflet, A.W., Fischer, R. P., Lewis, D. III, Bender, B., Chow, G.-M., Rayne, R., Kurihara, L. K., and Schoen, P. E., Ceram. Trans., 80, 287(1997).Google Scholar
10. Link, G., Bauer, W., Weddigen, A., Ritzhaupt-Kleissel, H.-J., and Thumm, M., Ceram. Trans., 80, 303(1997).Google Scholar
11. Miyake, S., Sethuhara, Y., Kinoshita, S., Sano, S., Kamai, M., Ohmae, T., and Abe, N., Ceram. Trans., 80, 313(1997).Google Scholar
12. Bykov, Y. V., Eremeev, A. G., and Holoptsev, V. V., Ceram. Trans., 80, 321(1997).Google Scholar
13. Ueno, T., Kinoshita, S., Setsuhara, Y., Engineering Materials, 161–163, 45(1999)Google Scholar
14. Makino, Y; Ueno, T; Matsumoto, T; Miyake, , Jpn. J. Appl. Phys. part 1, 40(2b), 1080(2001)Google Scholar
15. Sano, S., Makino, Y., Miyake, S., Bykov, Y. V., Eremeev, A.G., Egorov, S.V., Journal of Materials Science Letters, 19, 2247(2000)Google Scholar
16. Luo, J.R., Yuan, G. J., Su, Y. N., Zhao, S.X., Liu, H.X., Rare Metal Materials and Engineering, 31, 518(2002).Google Scholar