Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T16:23:29.473Z Has data issue: false hasContentIssue false

Surface Accumulation of Boron During Si Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

C. P. Parry
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
R. A. A. Kubiak
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
S. M. Newstead
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
E. H. C. Parker
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
T. E. Whall
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
Get access

Abstract

A high temperature, elemental boron evaporation source has been used for the study of the boron doping behaviour in Si as a function of growth temperature and doping level. Significant profile smearing of boron at doping levels below 5×1018cm−3 is observed. Profile smearing is more severe in higher doped samples for growth temperatures above 600°C at a growth rate of 0.28 nms−1. This is interpreted as arising from the formation of a surface phase of boron at higher doping levels. The marked improvement in profile abruptness at low temperatures suggests significant benefits associated with the use of an elemental boron source for the growth of high resolution Si/Si1−xGex device structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Prinz, E. J., Garone, P. M., Schwarz, P. V., Xiao, X., Sturm, J. C.. IEEE Elect. Dev. Lett. 12 (2), 42, (1991).Google Scholar
2) Mishima, T., Fredrikst, C. W., van de Walle, G. G. A., Gravestein, D. J., van den Heuvel, R. A., van Gorkum, A. A.. Applied Phys. Lett. 57 (24), 257, (1990).CrossRefGoogle Scholar
3) Parry, C. P., Newstead, S. M., Barlow, R. D., Augustus, P., Kubiak, R. A. A., Dowsett, M. G., Whall, T. E. and Parker, E. H. C.. Appl. Phys. Lett. 58 (5), 481, (1991).Google Scholar
4) Jorke, H. and Kibbel, H.. Appl. Phys. Lett. 57 (17), 1763, (1990).Google Scholar
5) Parry, C. P., Kubiak, R. A. A., Newstead, S. M., Whall, T. E., Parker, E. H. C.. [Solid Solubility of boron in Si determined by molecular beam epitaxy]. Submitted to J Appl. Phys.Google Scholar
6) Tatsumi, T.. Thin Solid Films 184, 1, (1991).Google Scholar
7) Lin, T. L., Fathauer, R. W., Grunthaner, P. J.. Thin Solid Films 184, 31, (1990).Google Scholar
8) Greene, J. E., Barnett, S. A., Rockett, A. and Bajor, G.. Applic. Surf. Sci. 22/23, 520, (1985).Google Scholar
9) Jorke, H.. Surf. Sci. 193, 569, (1988).CrossRefGoogle Scholar
10) Kubiak, R. A. A., Newstead, S. M., Powell, A. R., Parker, E. H. C., Whall, T. E., Naylor, T. N. and Bowen, K.. “Improved Flux Control From Sentinel III Electron Induced Emission Spectroscopy System”. Accepted for publication in J. Vac. Sci. and Tech. July/August 1991.Google Scholar
11) Vick, G. L. and Whittle, K. M.. J. Electrochem. Soc. 116, 1142, (1969).CrossRefGoogle Scholar
12) Schwettman, F. N. J. Appl Phys. 45 (4), 1918, (1974).Google Scholar
13) Pindoria, G., Kubiak, R. A. A., Newstead, S. M. and Woodruff, D. P.. Surf. Sci. 234, 17, (1990). and references therein. CrossRefGoogle Scholar
14) Headrick, R. L., Weir, B. E., Levi, F. J., Eaglesham, D. J. and Feldman, L. C.. Appl. Phys. Lett. 57 (26), 2779, (1990).Google Scholar
15) Lifshits, V. G., Atolov, V. B., Cchurusov, B. K. and Gavriljuk, Yu. L.. Surf. Sci. 222, 21, (1989).CrossRefGoogle Scholar
16) Schaffler, F. and Jorke, H.. Thin Solid Films 184, 75, (1990).Google Scholar
17) Andrieu, S., Arnaud d'Avitaya, F. and Pfister, J. C.. J Appl. Phys. 65 (7), 2681, (1989).Google Scholar