Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:44:17.053Z Has data issue: false hasContentIssue false

Structural Characteristics of CoGe2 Alloy Films Grown Heteroepitaxially on GaAs(100) Substrates Using the Partially Ionized Beam Deposition Technique

Published online by Cambridge University Press:  15 February 2011

K. E. Mello
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
S. P. Murarkak
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
S. L. Lee
Affiliation:
U.S.Army Armament Research, Development, Engineering Center, Watervliet, NY, 12189
T.-M. Lu
Affiliation:
Department of Physics, Applied Physics, Astronomy
Get access

Abstract

The Partially ionized beam (PIB) deposition technique was used to deposit CoGe2 thin films heteroepitaxially on GaAs(100) substrates in a conventional vacuum. For the CoGe2(001)/GaAs(100) system, which leads to an Ohmic contact, a substrate temperature of 280°C and ∼1200 eV Ge+ ions are required. Reducing the ion energy or lowering the substrate temperature both produce a different orientation in the films. Films deposited at 280°C with a zero accelerating potential for the ions, and those deposited at 200°C with -1200 eV Ge+ ions result in a CoGe2(100)//GaAs(100) type orientation domination, leading to rectifying behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kononenko, O. V., Matveev, V. N., Kasumov, A. Yu, Kislov, N. A., and Khodos, I. I., Vacuum, 46, 685 (1995).Google Scholar
2. Yun, S. J., Yoo, M. C., and Kim, K, J. Appl. Phys., 74, 2866 (1993).Google Scholar
3. Atwater, H. A. in Solid State Phenomena, 27, 67 (1992).Google Scholar
4. Yang, G.-R., Bai, P., Lu, T.-M., and Lau, W. M., J. Appl. Phys., 66, 4519 (1989).Google Scholar
5. Mello, K. E., Soss, S. R., Murarka, S. P., Lee, S. L., and Lu, T.-M., Appl. Phys. Lett., 68, 1817 (1996).Google Scholar
6. Murarka, S. P.,Metallization: Theory and Practice for VLSI and ULSI, Butterworth- Heinemann, Boston, MA, 1993, p. 11.Google Scholar
7. Braslau, N., J. Vac. Sci. Technol. A, 4, 3085 (1986).Google Scholar
8. Cullity, B. D., Elements of X-ray Diffraction, 2nd edition, Addison-Wesley Publishing Company, Inc., Reading, MA, 1978, p. 297 Google Scholar
9. Floro, J. A. and Thompson, C. V., Mat. Res. Soc. Symp. Proc., 187, 273 (1990).Google Scholar
10. Thompson, C. V., Mat. Res. Soc. Symp. Proc., 280, 307 (1993).Google Scholar
11. Palmstrdm, C. J. and Morgan, D. V. in Gallium Arsenide: Materials. Devices, and Circuits, John Wiley & Sons Ltd., New York, 1985, p. 197.Google Scholar
12. Tung, R. T., Sullivan, J. P., and Schrey, F., Mat Res. Soc. Symp. Proc., 318, 3 (1994).Google Scholar
13. Shackelford, J. F. Introduction to Materials Science for Engineers, Macmillan Publishing Company, New York, 1988, p. 273.Google Scholar