Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:38:05.692Z Has data issue: false hasContentIssue false

Solid Phase Epitaxy of Implanted Si-Ge-C Alloys

Published online by Cambridge University Press:  21 February 2011

Xiang Lu
Affiliation:
Applied Science and Technology Graduate Group Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
Nathan W. Cheung
Affiliation:
Applied Science and Technology Graduate Group Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
Get access

Abstract

Si1-x-yGexCy/Si heterostuctures were formed on Si (100) surface by Ge and C implantation with a high dose rate MEtal - Vapor Vacuum arc (MEVVA) ion source and subsequent Solid Phase Epitaxy (SPE). after thermal annealing in the temperature range from 600 °C to 1200 °C, the implanted layer was studied using Rutherford Back-scattering Spectrometry (RBS), cross-sectional High Resolution Transmission Electron Microscopy (HRTEM) and fourbounce X-ray Diffraction (XRD) measurement. Due to the small lattice constant and wide bandgap of SiC, the incorporation of C into Si-Ge can provide a complementary material to Si-Ge for bandgap engineering of Si-based heterojunction structure. Polycrystals are formed at temperature at and below 1000 °C thermal growth, while single crystal epitaxial layer is formed at 1100 °C and beyond. XRD measurements near Si (004) peak confirm the compensation of the Si1-x Gex lattice mismatch strain by substitutional C. C implantation is also found to suppress the End of Range (EOR) defect growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Presting, H., Kibbel, H., Jaros, M., Turton, R. M., Menczigar, U., Abstreiter, G. and Grimmeiss, H. G., Semicond. Sci. Tech., 1 (1992), 11271148.Google Scholar
2 Verdonekt, S.-Vandebroek, Crabbe, E., Meyerson, B. S., Harame, D. L., Restle, P. J., J. C. M. Stork, and Johnson, J. B., IEEE Tran. Electron Devices, vol. 41 (1994), No. 1, 90100.Google Scholar
3 Patton, G. L., Iyer, S. S., Delage, S. L., Tiwari, S., and Stork, J. M. C., IEEE Elec. Dev. Lett., vol. 9 (1988),No.4, 165167.Google Scholar
4 Strane, J. W., Stein, H. J., Lee, S. R., Doyle, B. L., Picraux, S. T. and Mayer, J. W., Appl. Phys. Lett., 63 (20) 1993, 27862788.Google Scholar
5 Im, S., Washburn, J., Gronsky, R., Cheung, N. W., Yu, K. M., and Ager, J. W., Appl. Phys. Lett., 63 (19) 1993, 26822684.Google Scholar
6 Brown, I. G., Rev. Sci. INstrum., 63 (4) 1992, 23512356.Google Scholar
7 Brown, I. G., Feinberg, B., and Galvin, J. E., J. appl. Phys. 63 (10) 1988, 48894898.Google Scholar
8 Pfiester, J. R. and Alvis, J. R., IEEE Elect. Dev. Lett. vol. 9. No. 8 (1988), 391393.Google Scholar
9 Ozturk, M. C., Wortman, J. J., Osburn, C. M., A. ajmera, Rozgonyi, G. A., E. Frey, W. Chu, and C. Lee, IEEE Tran. Elect. Dev., vol. 35, No. 5 (1988), 659668.Google Scholar