Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-24T15:08:52.580Z Has data issue: false hasContentIssue false

Rheed-Oscillations During Pulsed Laser Deposition of YBCO

Published online by Cambridge University Press:  01 January 1992

H. Karl
Affiliation:
Institut für Physik, University of Augsburg, Memmingerstr. 6, D-8900 Augsburg, Germany
B. Stritzker
Affiliation:
Institut für Physik, University of Augsburg, Memmingerstr. 6, D-8900 Augsburg, Germany
Get access

Abstract

Reflection high-energy electron diffraction (RHEED) oscillations during pulsed laser ablation of YBCO on SrTiO3(100) substrates were measured. We found that the oscillations are modulated by the laser-pulse repetition frequency, due to diffuse scattering by the initially disordered YBCO material. Since the disordered YBCO crystallizes the specular intensity recovers exponentially with time. An estimate of the diffusion length was obtained by measuring RHEED oscillations during deposition on slightly misoriented SrTiO3(100). From the rise time of the RHEED signal and the mean diffusion length a diffusion constant of 1.4*10−2cm2/sec was determined [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Karl, H., Stritzker, B., Phys. Rev. Lett. 69, 2939 (1992)Google Scholar
2. Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Hirata, K., Hayashi, K., Kamigald, K. and Terauchi, , Phys. Rev. Lett. 65, 2684 (1990)Google Scholar
3. Tanai, M., Kawai, T. and Kawai, S., Appl. Phys. Lett. 58, 771 (1990)Google Scholar
4. Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S., and Yoshimota, , Appl. Phys. Lett. 58, 2027 (1991)Google Scholar
5. Matsumoto, T., Kawai, T., Kitahama, K., and Kawai, S., Appl. Phys. Lett. 58, 2039 (1991)Google Scholar
6. Kwo, J., Hong, M., Fulton, T.A., Gammel, P.L., and Mannaerts, J.P., Proc. SPIE, 1187, 57 (1989)Google Scholar
7. Terashima, T., Jijima, K., Yamamoto, K., Hirata, K., Bando, Y., and Takada, T., Jpn. J. Appl. Phys. 28, L987 (1989)Google Scholar
8. Koinuma, H., Yoshimoto, M., Nagata, H., and Tsukahara, T., Solid State Commun., 80, 9 (1991)Google Scholar
9. Chern, M.Y., Gupta, A. and Hussey, B.W., Appl. Phys. Lett. 60, 3045 (1990)Google Scholar
10. Koren, G., Gupta, A., and Baseman, R.J., Appl. Phys. Lett. 54, 1920 (1989)Google Scholar
11. Gupta, A., Hussey, B., Kussmaul, A., and Segmller, A., Appl. Phys. Lett. 57, 2365 (1990)Google Scholar
12. Geohegan, D.B., Appl. Phys. Lett. 60, (22) 1992 Google Scholar
13. Stritzker, B., Schubert, I., Poppe, U., Zander, W., Krüger, U., Lubig, A., and Buchal, Ch., Journal of Less-Common Metalls, 164&165, 279 (1990) US-Patent: US 005084300A Germany: DP 3914476Google Scholar
14. Neave, J.H., Dobson, P.J., and Joyce, B.A., Appl. Phys. Lett. 47, (2) 1985 Google Scholar
15. Lowndes, D.H., Zheng, X.Y., Zhu, S., Budai, J.D. and Warmack, R.J., Appl. Phys. Lett. 61, (7) 1992 Google Scholar