Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T22:13:10.191Z Has data issue: false hasContentIssue false

Relaxation Behavior in Polystyrene Near and Above the Glass Transiton Studied by Ultrasonic Technique

Published online by Cambridge University Press:  10 February 2011

A. Sahnoune
Affiliation:
National Research Council Canada, Industrial Materials Institute, 75, De Mortagne, Boucherville, Québec J4B 6Y4 CANADA
L. Piché
Affiliation:
National Research Council Canada, Industrial Materials Institute, 75, De Mortagne, Boucherville, Québec J4B 6Y4 CANADA
Get access

Abstract

We report measurements of the temperature and pressure dependence of ultrasonic modulus in polystyrene between 340 and 550 K and applied pressures up to 775 bar. The real and imaginary parts of the modulus are analyzed within the Havriliak-Negami model and very good agreement is found over the entire temperature and pressure ranges. Using the Vogel-Tammann-Fulcher equation for the relaxation time, the Kauzmann temperature TK and the fragility parameter D of polystyrene were determined. The value of D indicates that polystyrene is a fragile-glass former.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Relaxation in Complex Systems, edited by Ngai, K. L. and Wright, G. B. (North Holland, Amesterdam, 1991).Google Scholar
2. Bohmer, R. and Angell, C. A. in Disorder Effects on Relaxational Processes, edited by Richert, R. and Blumen, A. (Springer, Berlin, 1994), p. 11.Google Scholar
3. Scherer, G. W., J. Non-Cryst. Solids, 123, 75 (1990).Google Scholar
4. Williams, G. W. and Watts, D. C., Trans. Faraday Soc. 66, 80 (1970).Google Scholar
5. Havriliak, S. and Negami, S., Polymer 8, 161 (1967).Google Scholar
6. Plamer, R. G., Stein, D. L., Abrahams, E., and Anderson, P. W., Phys. Rev. Lett., 53, 958 (1984).Google Scholar
7. Alvarez, F., Alegria, A., and Colmenero, J., Phys. Rev., B, 44, 7306 (1991).Google Scholar
8. Vogel, H., Phys. Z. 22, 645 (1921); G. S. Fulcher, J. Am. Chem. Soc. 8, 789 (1925).Google Scholar
9. Massines, F., Piché, L., and Lacabanne, C., Makromol. Chem. Macromol. Symp. 23, 121 (1989).Google Scholar
10. Gruber, G. J. and Litovitz, T. A., J. Chem. Phys. 40, 13 (1964).Google Scholar
11. Jeong, Y. H., Nagel, S. R., and Bhattacharya, S., Phys. Rev. A, 34, 602 (1986).Google Scholar
12. Hartmann, B., Lee, G. F., and Lee, J. D., J. Acoust. Soc. Am. 95, 226 (1994).Google Scholar
13. Cutroni, M., Migliardo, P., Piccolo, A., and Alba-Simionesco, C., J. Non-Cryst. Solids, 172–174, 201 (1994).Google Scholar
14. Sahnoune, A., Massines, F., and Piché, L., J. Polym. Sci., Part B: Polym. Phys. (in print, 1996).Google Scholar
15. Adam, G. and Gibbs, J. H., J. Chem. Phys., 43, 139 (1965).Google Scholar
16. Samara, G. A., J. Polym. Sci., Part B: Polym. Phys., 30, 669 (1992).Google Scholar
17. McCrum, N. G., Read, B. E., and Williams, G., Anelastic and Dielectric Effects in Polymeric Solids (Wiley & Sons, New York, 1967).Google Scholar
18. Angell, C. A., J. Non-Cryst. Solids, 131–132, 13 (1991).Google Scholar
19. Böhmer, R., Ngai, K. L., Angell, C. A., and Plazek, D. J., J. Chem. Phys., 99, 4201 (1993).Google Scholar
20. Plazek, D. J. and Ngai, K. L., Macromolecules 24, 1222 (1991).Google Scholar
21. Onogi, S., Matsuda, T., Kitagawa, K., Macromolecules 3, 109 (1970).Google Scholar
22. Eisenberg, A., in Physical Properties of Polymers, 2nd ed. (American Chemical Society, Washington, 1993), p. 61.Google Scholar