Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T22:09:49.115Z Has data issue: false hasContentIssue false

Rational Construction of Polymeric Nonlinear Optical Materials. Properties of Chromophore-Functionalized Polystyrenes

Published online by Cambridge University Press:  25 February 2011

C. Ye
Affiliation:
Department of Chemistry and the Materials Research Center
N. Minami
Affiliation:
Department of Chemistry and the Materials Research Center
T. J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center
J. Yang
Affiliation:
Department of Physics and the Materials Research Center Northwestern University, Evanston, IL 60208 USA
G. K. Wong
Affiliation:
Department of Physics and the Materials Research Center Northwestern University, Evanston, IL 60208 USA
Get access

Abstract

Processable polymeric nonlinear optical materials can be synthesized by functionalizing a glassy macromolecule with chromophores having large quadratic hyperpolarizabilities, followed by poling in an electric field. In the present case, the functionalization of polystyrene with 4- (4-nitrophenylaza)(N-ethyl)(2-hydroxyethyl))aniline, 4-(4-N,N-dimethylaminostyryl) pyridine, and N-(4-nitrophenyl)-L-prolinol is described. Particularly noteworthy is the high level of chromophore units that can be incorporated into transparent films of these materials, the high second harmonic coefficients that can be achieved (as high as d33 – 11 × 10-9 esu at 1064 nm), and the long-term temporal stability of the second harmonic generation capacity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shen, Y. R., The Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
2. Abraham, E., Seaton, C. F., Smith, S. D., Sci. Amer. 85 (1984).Google Scholar
3. Chemla, D. S., Zyss, J., Eds. Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1,2 (Academic Press, New York, 1987).Google Scholar
4. Khanarian, G., Ed. Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, SPIE, 682 (1986).Google Scholar
5. Williams, D. J., Angew. Chem. Int. Ed. Engl. 23, 490 (1984).Google Scholar
6. Li, D., Yang, J., Ye, C., Ratner, M. A., Wong, G., Marks, T. J. in Nonlinear Optical and Electroactive Polymers, edited by Prasad, P. N. and Ulrich, D. R. (Plenum Press, New York, in press).Google Scholar
7. Ye, C., Marks, T. J., Yang, J., Wong, G. K., Macromolecules, 20, 2322 (1987).Google Scholar
8. Kalinowski, H.-D., Seebach, D., Grass, G., Angew. Chem. Int. Ed. Engl. 14, 762 (1975).CrossRefGoogle Scholar
9. Marvel, C. S. and Sekera, V. C., Org. Synth. I 11, 366 (1955).Google Scholar
10. Shirley, D. A. and Ready, W. H., J. Am. Chem. Soc. 73, 458 (1951).CrossRefGoogle Scholar
11. Minami, N., Marks, T. J., unpublished results.Google Scholar
12. Gu, S. J., Saha, S. K., Wong, G. K., Mol. Cryst. Liq. Cryst. 69, 287 (1981).Google Scholar
13. Kaino, T., Fujiki, M., Nara, S., J. Appl. Phys. 52, 7061 (1981).Google Scholar
14. Brandrup, J., Immergut, E. H., Eds. Polymer Handbook, 2nd ed. (Wiley: New York, 1975) p. V58.Google Scholar
15. Small, K. D., Singer, K. D., Sohn, J. E., Kuzyk, M. G., and Lalama, S. J., in ref. 4, pp. 150–169.Google Scholar
16. Singer, K. D., Kuzyk, M. G., and Sohn, J. E., J. Opt. Soc. Am. B 4, 968 (1987).Google Scholar
17. Jerphagnon, J. and Kurtz, S. K., J. Appl. Phys. 41, 1667 (1970).Google Scholar
18. Hampsch, H. L., Yang, J., Wong, G. K., and Torkelson, J. M., Macromolecules, in press.Google Scholar