Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-28T01:56:49.419Z Has data issue: false hasContentIssue false

Rapid Isothermal Annealing of Doped and Undoped Spin-on Glass Films

Published online by Cambridge University Press:  15 February 2011

A. Slaoui
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
L. Ventura
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
A. Lachiq
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
R. Monna
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
J. C. Muller
Affiliation:
Laboratoire Phase (UPR 292 CNRS), B.P.20, 23 rue du Loess,F-67037 Strasbourg, France
Get access

Abstract

The rapid thermal annealing of doped (SOD) and undoped (SOG) glass films spinned onto silicon from diluted or undiluted solutions has been investigated. The dilution performed by methanol has allowed to obtain oxide films as thin as 10 nm.

The optical measurements of annealed SOG films have shown that good oxide films without oxygen deficiency are achievable. The electrical characteristics of Al-gate capacitors assessed by Capacitance-voltage measurements have shown a great dependence of the water content in the range of 600–850°C before reaching a typical dielectric constant value near 3.8 at higher temperatures. Low Interface state densities values obtained at temperature up to 900°C confirm the curing effect of a rapid thermal annealing.

On the other hand, we have demonstrated that the efficiency of rapid thermal diffusion from boron or phosphorus SOD films deposited on Si wafers depends on the source composition and its thickness. In particular, we have shown that it is possible to control the junction depth, the surface concentration and the minority-carrier diffusion length by varying the amount of dopant concentration in the solution, the thickness of the doped oxide film and the rapid thermal processing parameters. Futhermore, the remaining doped SOG film can play the role of an efficient oxide passivation layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, M., Kanzawa, R. and Sakai, K., J. Electrochem. Soc. 133, 1167(1986).Google Scholar
2. Sameshima, T. and Usui, S., Jap. J. Appl. Phys. 26,L1208 (1987).Google Scholar
3. Slaoui, A., Foulon, F. and Siffert, P., J. Appl. Phys. 67, 6197 (1990).Google Scholar
4. Zagozdzon-Wosik, W., Grabiec, P. B. and Lux, G., MRS proc. V303, ed. by Gelpey, J.C., Elliot, J.K., Wortman, J.J. and Ajmara, A. (1993).Google Scholar
5. Eichammer, W., Quat, V. T. and Siffert, P., J. Appl. Phys. 66, 3857 (1989).Google Scholar
6. Hartiti, B., Slaoui, A., Muller, J. C., Stuck, R. and Siffert, P., J. Appl. Phys. 71, 5474(1992)Google Scholar
6. Hartiti, B., Schindler, R., Slaoui, A., Wagner, B., Muller, J.C., Reis, I., Eyer, A. and Siffert, P., Progress in Photovoltaic : Reserach and Applications, 2, 129 (1994) ; R. Schindler, I. Reis, B. Wagner, A. Eyer, H. Lautenschlager, C. Schetter, W. Warta, B. Hartiti, A. Slaoui, J. C. Muller and P. Siffert, 23rd IEEE PV conf.(1993), p. 159.Google Scholar
8. Geedham, A. M., Goodman, L. A. and Gossenberg, H. F., RCA 44, 326, 1983.Google Scholar
9. Ventura, L., Hartiti, B., Slaoui, A., Muller, J. C. and Siffert, P., MRS Conf. Proc., V. 284, ed. Kanicki, J. and Devine, R.A.B., (1992)Google Scholar
10. Pliskin, W. A., J. Vac. Sci. 14,1064(1977).Google Scholar
11. Pliskin, W. A. and Lehmann, A., J. Electrochem. Soc. 112 (1965) 1013 Google Scholar
12. Schumann, L., Lehmann, H. S., Sobotta, H., Riede, V., Teschner, U., Hubner, K., Phys. Stat. Sol,. B110, K 69(1962).Google Scholar
13. Uoochi, Y., Tabuchi, A. and Furumura, Y., J. Electrochem. Soc. 137, 3923(1990).Google Scholar
14. Almeida, R. M. and Puntano, C. G., J. Appl. Phys. 68, 4225(1990).Google Scholar
15. Terman, L. M., Solid State Electron 5,285(1962).Google Scholar
16. Usami, A., Ando, M., Tsunckane, M. and Wada, T., IEEE Trans. El.. Dev. 39, 105 (1992).Google Scholar
17. Zagozdzon-Wosik, W., Grabiec, P. B. and Lux, G., J. Appl. Phys. 75,337(1994).Google Scholar
18. Reindl, K., Solid-State Electronics, 16,181(1973).Google Scholar
19. Itoh, S., Homma, Y., Sasaki, E., Uchimura, S. and Morishima, H., J. Elect.Soc. 137,1212 (1990).Google Scholar
20. Ventura, L., Slaoui, A., Hartiti, B., Muller, J. C., Stuck, R. and Siffert, P., MRS Conf. V. 342, ed. Wortman, J.J., Gelpey, J.C., Green, M.L., Brueck, S.R.J. and Roozeboom, F., (1994)p.345.Google Scholar
21. Boltaks, B.I., Diffusion in Semiconductors, Chap.4, Infosearch Ltd. London (1963).Google Scholar
22. Fair, R.B. and Tsai, J.C.C., J. Electrochem. Soc. 124, 1107(1977).Google Scholar
23. Fair, R. B., in “Physics and Chemistry of Impurity Diffusion and Oxidation of Silicon”, ed. by Kahng, D (Academic Press, New York, 1981), p. 1.Google Scholar
24. Zagozdzon-Wosik, W. and Grabiec, P., RTP'93 conference, Scottdale, USA (1993).Google Scholar
25. Rastogi, M., Zagozdzon-Wosik, W., Romero-Borja, F., Heddleson, J.M., Beavers, R., Grabiec, P. and Wood, L.T., ref.20.Google Scholar
26. Miyake, M., J. Electrochem. Soc. 138,3031 (1991).Google Scholar
27. Usami, A., Ando, M., Tsunekane, M., Yamamoto, K., Wada, T., Inoue, Y., 18th IEEE PVSEC conf. (1985), p.797.Google Scholar
28. Thakur, R. P. S., and Singh, R., Appl. Phys. Lett. 64, 327 (1994).Google Scholar
29. Cho, B. J., and Kim, C. K., SPIE 180, 180 (1990).Google Scholar
30. Hartiti, B., Slaoui, A., Muller, J.C. and Siffert, P., Appl. Phys. Lett. 63, 1249(1993).Google Scholar
31. Hartiti, B., Quat, V.T., Eichhammer, W. and Muller, J.C., Appl. Phys. Lett. 55, 873 (1989).Google Scholar
32. Schröter, W. and Kühnapfel, R., Appl. Phys. Lett. 56, 2207(1990).Google Scholar
33. Kang, J. S. and Schroder, D. K., J. Appl. Phys. 65, 2974(1989).Google Scholar
34. Lecrosnier, D., Poupon, J., Richou, F., Pelous, G. and Bernièe, F., J. Appl. Phys. 52,52(1991).Google Scholar
35. Kane, D.E. and Swanson, R.M., ref. 27, p.578.Google Scholar
36. Ventura, L., Slaoui, A., Schindler, R., Loghmarti, M., Muller, J. C., Stuck, R. and Siffert, P., 12th European Photovoltaic Solar Energy Conference, (1994)p.560.Google Scholar