Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T16:24:23.648Z Has data issue: false hasContentIssue false

Range and Damage Distribution in Cluster Ion Implantation

Published online by Cambridge University Press:  03 September 2012

I. Yamada
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
J. Matsuo
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
E. C. Jones
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
D. Takeuchi
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
T. Aoki
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
K. Goto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
T. Sugii
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-01, Japan
Get access

Abstract

Cluster ion implantation is an attractive alternative to conventional ion implantation, particularly for shallow junction formation. It is easy to obtain high-current ion beams with low equivalent energy using cluster ion beams. The implanted boron distribution in 5keV B10H14 implanted Si is markedly shallower than that in 5keV BF2 ion implanted Si. The implanted depth is less than 0.04 μm, indicating that cluster ion implantation is capable of forming shallow junctions. The sheet resistance of 3keV B10H14 implanted samples falls below 500 Ω/sq after annealing at 1000°C for 10s. Shallow implantation can be realized by a high energy cluster beam without space-charge problems in the incident beam. Defect formation, resulting from local energy deposition and multiple collisions, is unique for cluster ions. The thickness of the damaged layer formed by cluster ion bombardment increases with the size of the cluster, if implant energy and ion dose remain constant. This is one of the nonlinear “cluster effects,” which may allow some control over the implant damage distributions that accompany implanted ions, and which have been shown to have a great effect on dopant redistribution during annealing

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akizuki, M., Matsuo, J., Ogasawara, S., Harada, M., Doi, A., and Yamada, I., Japan. J. Appl. Phys., Part 1, 35 (1996) 1450.Google Scholar
2. Takeuchi, D., Shimada, N., Matsuo, J., and Yamada, I., in Ion Impl. Tech. 96 (Austin, Jun. 2124, 1996), in press.Google Scholar
3. Goto, K., Matsuo, J., Sugii, T., Minakata, H., Yamada, I., and Hisatsugu, T., in Proc. oflnt. Elec. Dev. Meeting (Washington, D.C., Dec. 1996), in press.Google Scholar
4. Yamada, I., Takaoka, G., Akizuki, M., Ascheron, C.E., and Matsuo, J., in Ion Imp,. Tech. 94 (Amsterdam: North-Holland, 1995), 1002.Google Scholar
5. Akizuki, M., Harada, M., Miyai, Y., Doi, A., Yamaguchi, T., Matsuo, J., Takaoka, G.H., Ascheron, C.E., and Yamada, I., Nucl. Instrum. Meth. Phys. Res. B, 99 (1995) 229.Google Scholar
6. Yamaguchi, T., Matsuo, J., Akizuki, M., Ascheron, C.E., Takaoka, G.H., and Yamada, I., Nucl. Instrum. Meth. Phys. Res. B, 99 (1995) 237.Google Scholar
7. Freeman, J.H., in Ion Impl. Tech. 92 (Amsterdam: North-Holland, 1993), 357.Google Scholar
8. Sze, S.M., Physics of Semiconductor Devices, (New York: Wiley and Sons, 1981).Google Scholar
9. Park, B.G., Bokor, J., Luftman, H.S., Rafferty, C.S., and Pinto, M.R., IEEE Elec. Dev. Lett., 13 (1992) 507.Google Scholar
10. Fair, R.B., in Rapid Thermal Processing Science and Technology, ed. by Fair, R. B., (Boston: Academic Press, 1993) 169.Google Scholar
11. R., Burger and W., Howard, eds., Semiconductor Industry Association Semiconductor Technology Workshop Working Group Reports, (Santa Clara: SIA, 1993).Google Scholar
12. Matsuo, J., Takeuchi, D., Kitai, A., and Yamada, I., Nucl. Instrum. Meth. Phys. Res. B, 112 (1996) 89.Google Scholar
13. I Yamada and Matsuo, J., in Proc. of Mat. Res. Soc. Symposium (San Francisco, Apr. 812, 1996), in press.Google Scholar
14. Sedgwick, T. O., Michel, A. E., Deline, V. R., and Cohen, S. A., J. of Appl. Phys., 63 (1988) 1452.Google Scholar
15. Jones, E. C., Im, S. and Cheung, N. W., in Proc. Ion Impl. Tech. 92, (Amsterdam: North-Holland, 1993), 373.Google Scholar
16. Jones, K.S., Prussion, S., and Weber, E.R., Appl. Phys. A, 45 (1988), 1.Google Scholar
17. Jones, K.S. and Rozgonyi, G.A., in Rapid Thermal Processing Science and Technology, ed. by Fair, R. B., (Boston: Academic Press, 1993) 123.Google Scholar
18. Aoki, T., Shimada, N., Takeuchi, D., Matsuo, J., Insepov, Z., and Yamada, I., in Proc. of Sol. St. Dev. Mat. 1996, submitted.Google Scholar