Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:01:33.593Z Has data issue: false hasContentIssue false

Raman Scattering Spectrum Along a Bevel Etched GaAs on Si, Tem Study and GaAs P-I-N Photodetector on Si

Published online by Cambridge University Press:  28 February 2011

Y.H. Lo
Affiliation:
University of California,Berkeley,CA
M.-N. Charasse
Affiliation:
University of California,Berkeley,CA
H. Lee
Affiliation:
University of California,Berkeley,CA
D. Vakhshoori
Affiliation:
University of California,Berkeley,CA
Y. Huang
Affiliation:
University of California,Berkeley,CA
Peter Yu
Affiliation:
University of California,Berkeley,CA
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley Laboratory,Berkeley,CA
M. Werner
Affiliation:
Lawrence Berkeley Laboratory,Berkeley,CA
S. Wang
Affiliation:
University of California at Berkeley and Lawrence Berkeley Laboratory
Get access

Abstract

Raman scattering is measured along a bevel etched GaAs epitaxial film grown on Si by molecular beam epitaxial (MBE). From the correlation length profile of Raman scatteringmost dislocation lines are confined in the 2000Å regions close to the interface. The strain profile calculated from the Raman peak shift shows that about 0.6% compressive strain exists near the interface because of lattice mismatch. However, as one moves away from the interface, the compressive strain is gradually counterbalanced by thermal expansion. Transmission electron microscope (TEM) studies of the local dislocation image and properties show that an ultra clean Si surface is essential for dislocation confinement. From high resolution TEM, we find that the distance between dislocations at the interface is nonuniform, varying from 50Å to 125Å with an average distance at 81Å. Finally, a GaAs p-i-n photodetector on Si substrate is fabricated. Even though a normal photoresponse curve is obtained, the high dark current (50nA) and relatively low responsivity (0.01A/W) show that the material quality needs to be further improved to make a minority carrier vertical transition device.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Choi, H. K., Tsaur, B.-Y., Metze, G. M., Turner, G. W., and Fan, J. C. C., IEEE Electron Device Lett. EDL–5, 207 (1984).Google Scholar
[2] Fischer, R., Chand, N., Kopp, W., Peng, C. K., and Morkoc, H., IEEE Trans. Electron Devices, ED–33, 206 (1986).Google Scholar
[3] Fischer, R., Chand, N., Kopp, W., and Morkoc, H., Appl. Phys. Lett. 47, 397 (1985).Google Scholar
[4] van der Ziel, J. P., Dupuis, R. D., and Bean, J. C., Appl. Phys. Lett. 48, 1713 (1986).Google Scholar
[5] Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Loqngerbo, M., and Erickson, L. P., J. Appl. Phys. 60, 1640 (1986).Google Scholar
[6] Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1981).Google Scholar
[7] Shen, H. and Pollak, F. H., Appl. Phys. Lett. 45, 692 (1984).Google Scholar
[8] Tiong, K. K., Amirtharaj, P. M., Pollak, F. H., and Aspesns, D. E., Appl. Phys. Lett. 44, 122 (1984).Google Scholar
[9] Windhorn, T. H., Metze, G. M., Tsaur, B. Y., and Fan, J. C. C., Appl. Phys. Lett. 45, 309 (1984).Google Scholar
[10] van der Ziel, J. P., Dupuis, R. D., Logan, R. A., Mikulyak, R. M., Pinzone, C. J., and Savage, A., Appl. Phys. Lett. 50, 454 (1987).Google Scholar