Hostname: page-component-6d856f89d9-vrt8f Total loading time: 0 Render date: 2024-07-16T03:57:09.488Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition of (Ba,Sr)TiO3 Ferroelectric thin Films

Published online by Cambridge University Press:  15 February 2011

J. Levy
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Naval Research Laboratory, Washington D.C., 20375-5345
C. Hubert
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Naval Research Laboratory, Washington D.C., 20375-5345
Get access

Abstract

Single phase, (100) oriented Ba0.5Sr0.5TiO3 (BST) thin films have been deposited onto (100) LaAlO3, SrTiO3, and MgO substrates using pulsed laser deposition (PLD). Interdigitated capacitors patterned on top of the ferroelectric film have been used to measure the dielectric constant and dissipation factor of these films as a function of DC bias and temperature at 1 MHz and as a function of DC bias and frequency (1 to 20 GHz) at room temperature. At room temperature, the capacitance can be reduced by as much as a factor of 4 using an electric field of ≤ 80 kV/cm. The dielectric properties (% tuning and dielectric loss) of the ferroelectric film is sensitive to both the deposition and post processing conditions. Optical imaging of the ferroelectric films using confocal scanning optical microscopy (CSOM) shows reproducible polarization fluctuations over sub-micrometer length scales. Dielectric loss in the ferroelectric film is reduced through a combination of post deposition processing and donor/acceptor doping of the films. A zero field tan5 = 0.01 - 0.005 has been measured for BST films which show significant tuning at microwave frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vardan, V. K., Ghodgaonkar, D. K., Vardan, V. V., Kelly, J. F., and Glikerdas, P., Microwave Journal January, 116127 (1992).Google Scholar
2. Horwitz, J. S., Chrisey, D. B., Pond, J. M., Auyeung, R. C. Y., Cotell, C. M., Grabowski, K. S., Dorsey, P. C., and Kluskens, M. S., Integrated Ferroelectrics 8, 53 (1996).Google Scholar
3. Chrisey, D. B. and Hubler, G. K., Pulsed Laser Deposition (Wiley Interscience, New York, 1994).Google Scholar
4. Bethe, K. and Welz, F., Mat. Res. Bull. 6, 209218 (1971).Google Scholar
5. Carrroll, K. R., Pone, J. M., Chrisey, D. B., Horwitz, J. S., and Leuchtner, R. E., Appl. Phys. Lett. 62, 1854 (1993).Google Scholar
6. Knauss, L. A., Pond, J. M., Horwitz, J. S., Chrisey, D. B., Mueller, C. H., and Treece, R. E., Appl. Phys. Lett. 69, 25 (1996).Google Scholar
7. Carter, A. C., Horwitz, J. S., Chrisey, D. B., Pond, J. M., Kirchoefer, S. W., and Chang, W., Integrated Ferroelectrics 17, 273285 (1997).Google Scholar
8. Hubert, C., Levy, J., Carter, A. C., Chang, W., Kirchoefer, S. W., Horwitz, J. S., and C. D.B., Applied Physics Letters 71, 33533355 (1997).Google Scholar
9. Henner, S. B., Selmi, F. A., Varadan, V. V., and VArdan, V. K., Materials Letters 15, 317324 (1993).Google Scholar
10. Chan, N. H., Sharma, R. K., and Smyth, D. M., J. Electrochem. 128, 1762 (1981).Google Scholar
11. Uhlmann, D. R., Teowee, G., and Boulton, J. M., J. Non-Crystalline Solids 131, 1194 (1991).Google Scholar
12. Wasser, R., in Ferroelecric Ceramics, edited by Setter, N. and Colla, E. L. (Birkhause, Basel, 1993), p. 273.Google Scholar
13. Feil, W. A. and Wessels, B. W., J. Appl. Phys. 74, 3972 (1993).Google Scholar
14. Frederikse, H. P. R., Thurber, W. R., and Hosler, W. R., Phys. Rev. 134, A442 (1964).Google Scholar
15. Baer, W. S., Phys. Rev. 144, A734 (1964).Google Scholar
16. Lee, C., Yahai, Y., and Brebner, J. L., Phys. Rev. B3, 2525 (1971).Google Scholar
17. Wagner, D., Bduerle, D., Schwab, F., Wöhlecke, M., Dorner, B., and Kraxenberger, H., Ferroelectrics 26 (1980).Google Scholar
18. Desu, S. B., Phys. Stat. Sol (a) 141, 119 (1994).Google Scholar
19. Frenzel, C. and Hegenbarth, H., Phys. Stat. Sol. (a) 23, 517 (1974).Google Scholar
20. Barskii, I. V., Vendik, O. G., Smirnov, A. D., and Khizha, G. S., Sov. Phys. Tech. Phys. 34, 1065 (1990).Google Scholar
21. Uhlmann, D. R., Teowee, G., and Boulton, J. M., J. Non. Crystalline Solids 131, 1194 (1991).Google Scholar
22. Gevorgian, S. S., Carlsson, E. F., Rudner, S., Helmersson, U., Kollberg, E. L. L., Wikborg, a. E., and Vendik, O. G.,.Google Scholar
23. Benedict, T. S. and Durand, J. L., Phys. Rev. 109 (1958).Google Scholar
24. Herner, S. B., Selmi, F. A., Vardan, V. V., and Vardan, V. K., Materials Letters 15, 317 (1993).Google Scholar
25. Burn, I., J. Mater. Sci. 14 (1979).Google Scholar