Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-26T11:11:10.789Z Has data issue: false hasContentIssue false

Properties of Diamondlike Carbon Films

Published online by Cambridge University Press:  28 February 2011

K. Fujii
Affiliation:
Fundamental Research Labs., NEC Corporation 1-1, Miyazaki 4-chome, Miyamae-ku, Kawasaki, Kanagawa 213, Japan
S. H. Yokota
Affiliation:
Fundamental Research Labs., NEC Corporation 1-1, Miyazaki 4-chome, Miyamae-ku, Kawasaki, Kanagawa 213, Japan
N. Shōhata
Affiliation:
Fundamental Research Labs., NEC Corporation 1-1, Miyazaki 4-chome, Miyamae-ku, Kawasaki, Kanagawa 213, Japan
Get access

Abstract

Hard carbon films have been deposited onto room-temperature silicon substrates in a de plasma of methane and hydrogen. The substrates are placed on the cathode. A stainless mesh is held at the same potential as the cathode and is set above the substrates. Although the deposited films are amorphous and contain 24.4 atomic percent hydrogen, they have the following diamondlike properties: hardness is almost equivalent to that of natural diamond; electrical resistivity is on the order of 1013Ωcm; chemical inertness is excellent to acids; thermal diffusivity is 5.2 cm2 /sec. However, the films have a large compressive stress of 1.3×1010 dyn/cm2.

Annealed films exhibit dehydrogenation, graphitization, an increase in chemical reactivity, volume expansion and stress relaxation above 400°C. The activation energy for the transformation from the diamondlikephase to the graphitic phase is 18 kcal/mole.

The dependence of the thermal diffusivity and hydrogen content on both the CH4/H2 gas mix ratio and the total pressure have been measured for the films deposited in a dc plasma without the mesh.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spitsyn, B.V., Bouilov, L.L. and Derjaguin, B.V., J. Cryst. Growth 52, 219 (1981).Google Scholar
2. Matsumoto, S., Sato, Y., Kamo, M. and Setaka, N., Jpn. J. Appl. Phys. 21 (4), L183 (1982).Google Scholar
3. Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46 (2), 146 (1985).CrossRefGoogle Scholar
4. Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25 (6), L519 (1986).Google Scholar
5. Whitmell, D.S. and Williamson, R., Thin Solid films 35, 255 (1976).Google Scholar
6. Berg, S. and Andersson, L.P., Thin Solid Films 58, 117 (1979).CrossRefGoogle Scholar
7. Vora, H. and Moravec, T.J., J. Appl. Phys. 52 (10), 6151 (1981).CrossRefGoogle Scholar
8. Ojha, S.M. and Holland, L., Thin Solid Films 40, L31 (1977).Google Scholar
9. Kamo, M., Sato, Y., Matsumoto, S. and Setaka, N., J. Cryst. Growth 62, 642 (1983).Google Scholar
10. Fujii, K., Shōhata, N., Mikami, M. and Yonezawa, M., Appl. Phys. Lett. 47 (4), 370 (1985).Google Scholar
11. Aisenberg, S. and Chabot, R., J. Appl. Phys. 42 (7), 2953 (1971).Google Scholar
12. Spencer, E.G., Schmidt, P.H., Joy, D.C. and Sansalone, F.J., Appl. Phys. Lett. 29 (2), 118 (1976).CrossRefGoogle Scholar
13. Weissmantel, C., Reisse, G., Erler, H.-J., Henny, F., Bewilogua, K., Ebersbach, U. and Scharer, C., Thin Solid Films 63, 315 (1979).Google Scholar
14. Freeman, J.H., Temple, W. and Gard, G.A., Vacuum 34 (1–2), 305 (1984).CrossRefGoogle Scholar
15. Hauser, J.J., J. Non-Cryst. Solids 23, 21 (1977).Google Scholar
16. Fujimori, S., Kasai, T. and Inamura, T., Thin Solid Films 92, 71 (1982).Google Scholar
17. Craig, S. and Harding, G.L., Thin Solid Films 91, 345 (1982).Google Scholar
18. Hiraki, A., Kawano, T., Kawakami, Y., Hayashi, M. and Miyasato, T., Solid State Commun. 50 (8), 713 (1984).CrossRefGoogle Scholar
19. Yanagisawa, M. and Motomura, Y., ASLE Trans. (to be published).Google Scholar
20. Hatta, I., Sasuga, Y., Kato, R. and Maesono, A., Rev. Sci. Instrum. 56 (8), 1643 (1985).CrossRefGoogle Scholar
21. Jaccodine, R.J. and Schlegel, W.A., J. Appl. Phys. 31 (6), 2429 (1966).Google Scholar
22. Dischler, B., Bubenzer, A. and Koidl, P., Appl. Phys. Lett. 42 (8), 636 (1983).CrossRefGoogle Scholar