Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-09-01T19:28:34.034Z Has data issue: false hasContentIssue false

Photoluminescence From 2D Electron Gas and Many Body Effects as a Probe of the Crystalline Quality of Pseudomorphic GaAs/InGaAs/AlGaAs and GaAs/N(GaAs)10(N+l)(InAs)m/AlGaAs Modfet Structures

Published online by Cambridge University Press:  21 February 2011

A. Tabata
Affiliation:
Laboratoire de Physique de la Matière (URA CNRS 358) Bât. 502 INSA-Lyon, 69621 Villeurbanne, France
T. Benyattout
Affiliation:
Laboratoire de Physique de la Matière (URA CNRS 358) Bât. 502 INSA-Lyon, 69621 Villeurbanne, France
G. Guillot
Affiliation:
Laboratoire de Physique de la Matière (URA CNRS 358) Bât. 502 INSA-Lyon, 69621 Villeurbanne, France
M. V. Baeta Moreira
Affiliation:
Institut de Micro- et Optoélectronique, EPF - Lausanne, CH 1015, Switzerland.
M. A. Py
Affiliation:
Institut de Micro- et Optoélectronique, EPF - Lausanne, CH 1015, Switzerland.
Get access

Abstract

We have performed low temperature (5K) photoluminescence (PL) measurements in order to study the crystalline quality of pseudomorphic modulation-doped field effect transistors (MODFET’s) grown by MBE. MODFET’s based on GaAs/AlGaAs with either an InGaAs or a (GaAs)n(InAs)m short period superlattice (SPS) channel have been studied. On modulation doped structures, the presence of free carriers into the channel strongly affects the PL emission. In this paper we present a study of PL line shape of MODFET structures with different channel thicknesses and growth conditions. A correlation between the PL line shape and these parameters is clearly observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Henderson, T. S., Masselink, W. T., Kopp, W. and H. Morkoç IEEE Electron Device Lett., EDL7, 288 (1986)Google Scholar
2 Toyoshima, H., Onda, K., mizuki, E., Samoto, N., Kuzuhara, M., Itoh, T., Okamoto, A., Anan, T. and Ichihashi, T.. J. Appl. Phys. 69, 3941 (1991)Google Scholar
3 Ohno, H., Katsumi, R., Takama, T. and Hasegawa., H. Jpn. J. Appl. Phys. 24, L682 (1985)Google Scholar
4 Yao., T. Jpn. J. Appl. Phys. 22, L680 (1983)Google Scholar
5 Moreira, M. V. B., Py, M. A. and Ilegems, M., J. Vac. Sci. Technol. B, 11, 593 Google Scholar
6 Moreira, M. V. B., Py, M. A. and Ilegems, M., J. Vac. Sci. Technol. B, 11, 601 Google Scholar
7 Moreira, M. V. B., Py, M. A., Gaillanou, M. and Ilegems, M., J. Vac. Sci. Technol. B10, 103 (1992)Google Scholar
8 Livescu, G., Miller, D. A. B., Chemla, D. S., Ramaswamy, M., Chang, T. Y., Sauer, N., Gossard, A. C. and English., J. H. IEEE J. Quantum Electronics. 24, 1677 (1988).Google Scholar
9 Cingolani, R., ,Stolz, W. and Ploog, K., Phys. Rev. B, 40, 2950 (1989)Google Scholar
10 Zhang, Y. H., Ledentsov, N. N. and Ploog., K. Phys. Rev. B, 44, 1399 (1991)Google Scholar
11 Skolnick, M. S., Rorison, J. M., Nash, K. J., Mowbray, D. J., Tapster, P. R., Bass, S. J. and Pitt, A. D. Phys. Rev. Lett., 58,2130 (1987)Google Scholar
12 Zhang, Y. H. and Ploog., K. Phys. Rev. B, 45, 14069 (1992)Google Scholar
13 D.F.Welch, , Wicks, G. W. and Eastman, L. F., Appl. Phys. Lett. 46, 991 (1985)Google Scholar