Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-10-01T07:08:39.019Z Has data issue: false hasContentIssue false

A Photoemission Study of Electrochemically Etched Light Emitting Silicon

Published online by Cambridge University Press:  25 February 2011

Jeff Terry
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
H. Liu
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94309
R. Cao
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
J. C. Woicik
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
P. Pianetta
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
X. Yang
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
J. Wu
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
M. Richter
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
N. Maluf
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD
F. Pease
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD
A. Dillon
Affiliation:
Department of Chemistry, University of Colorado, Boulder, CO
M. Robinson
Affiliation:
Department of Chemistry, University of Colorado, Boulder, CO
S. George
Affiliation:
Department of Chemistry, University of Colorado, Boulder, CO
Get access

Abstract

The valence band and the Si 2p core level of electrochemically etched light emitting porous silicon samples prepared with different etching parameters and upon thermal annealing have been studied. The core level shows appreciable broadening as chemical etching time increases. Upon annealing, the core level linewidth decreases and the valence band develops spectral features. The photoluminescence intensity, also, decreases upon annealing. However, impurity species are found to be present only in trace amounts. Our data is consistent with a photoluminescence mechanism involving a silicon species that degrades, decomposes, or desorbs upon annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2. Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, a., and Bomchil, G., Surf. Sci. 25A, 195 (1991).CrossRefGoogle Scholar
3. Chuang, S.-F., Collins, S. D., and Smith, R. L., Appl. Phys. Lea. 55, 675 (1989).CrossRefGoogle Scholar
4. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. X, 2379 (1990).CrossRefGoogle Scholar
5. Fathauer, R. W., George, T., Ksendzov, A, and Vasquez, R. P., Appl. Phys. Lett. 0, 995 (1992).CrossRefGoogle Scholar
6. Vasquez, R. P., Fathauer, R. W., George, T., Ksendzov, A., and Lin, T. L., Appl. Phys. Lett. 60, 1004 (1992).CrossRefGoogle Scholar
7. Tsai, C., Li, K.-H., Kinosky, D. S., Qian, R.-Z., Hsu, T.-C., Irby, J. T., Banerjee, S. K., Tasch, A. F., and Cambell, Joe C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 6, 1700 (1992).CrossRefGoogle Scholar
8. Xu, Z. Y., Gal, M., and Gross, M., Appl. Phys. Lett. 60, 1375 (1992).CrossRefGoogle Scholar
9. Hardeman, R. W., Beale, M. I. J., Gasson, D. B., Keen, J. M., Pickering, C., and Robbins, D. J., Surf. Sci. 152/153, 1051 (1985).CrossRefGoogle Scholar
10. Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., J. Phys. C 11, 6535 (1984).CrossRefGoogle Scholar
11. Terry, J., Liu, H., Woicik, J., Cao, R., and Pianeua, P., in preparation.Google Scholar
12. Cullis, A. G., and Canham, L. T., Nature 353, 335 (1991).CrossRefGoogle Scholar
13. Gupta, P., Colvin, V. L., and George, S. M., Phys. Rev. B 37, 8234 (1988).CrossRefGoogle Scholar
14. Karlsson, C. J., Landemark, E., Johansson, L. S. O., Karlsson, U. O., and Uhrberg, R. I. G., Phys. Rev. B 41, 1521 (1990); and references therein.CrossRefGoogle Scholar
15. Larsson, C. U. S., Flodstrom, A. S., Nyholm, R., Incoccia, L., and Senf, F., J. Vac. Sci. Technol. A 5, 3321 (1987).CrossRefGoogle Scholar
16. Chabal, Y. J., Higashi, G. S., Raghavachari, K., and Burrows, V. A., J. Vac. Sci. Technol. A 1, 2104 (1989).CrossRefGoogle Scholar
17. Egelhoff, W. F. Jr, Surf. Sci. Rep. 6, 253 (1987).CrossRefGoogle Scholar
18. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F., and Lehmann, V., Appl. Phys. Lett., in press.Google Scholar