Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-13T11:29:16.611Z Has data issue: false hasContentIssue false

Oxygen Ordering in Yba2cu3oz at Low Temperature

Published online by Cambridge University Press:  28 February 2011

G. Ceder
Affiliation:
Dept. of Materials Science and Minerals Engineering, University of California, Berkeley, CA 94720, and Materials and Chemical Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
M. Asta
Affiliation:
Dept. of Physics, University of California, Berkeley, CA 94720
D. de Fontaine
Affiliation:
Dept. of Materials Science and Minerals Engineering, University of California, Berkeley, CA 94720, and Materials and Chemical Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

A parameter‐free phase diagram is derived for oxygen ordering in the YBa2Cu3Oz compound. Four phase regions are found in which the following structures are stable: Tetragonal, Ortho I, Ortho II, and anti‐Ortho I. In addition, long‐period quasi‐one‐dimensional states of order can become stable at low temperature. A simple branching algorithm allows one to predict these additional structures and their diffraction patterns. Theoretical predictions are in excellent agreement with recent experimental findings. Implications for the existence of Tc plateaus are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Beyers, R. and Shaw, T., in Solid State Physics Vol. 42, edited by Ehrenrich, H. and Tumbull, D. (Academic Press, NY 1989), pp. 135212.Google Scholar
2 Reyes‐Gasga, J., Krekels, T., Van Tendeloo, G., Van Landuyt, J., Amelinckx, S., Bruggink, W. H. M. and Verwij, M., Physica C 159. 831 (1989).Google Scholar
3 Beyers, R., Ahn, B. T., Gorman, G., Lee, V. Y., Parkin, S. S. P., Ramirez, M. L., Roche, K. P., Vazquez, J. E., Gür, T. M. and Huggins, R. A., Nature 340. 619 (1989).Google Scholar
4 Lambin, P., in Proceedings of Conference on Oxygen Disorder Effects in High‐Tc Superconductors, Trieste, Italy, April 1821, 1989.Google Scholar
5 Cava, R. J. et al. , Nature, 329, 423 (1987).Google Scholar
6 Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M. and Werder, D., Phys. Rev. B 36, 5719 (1987).Google Scholar
7 de Fontaine, D., Wille, L T. and Moss, S. C., Phys Rev. B 36, 5709 (1987).Google Scholar
8 Wille, L. T. and de Fontaine, D., Phys. Rev. B 37, 2227 (1988).Google Scholar
9 Inoue, M., Takemori, T. and Sakudo, T., Jap. J. Appl. Phys. 26, L2015 (1987).Google Scholar
10 Wille, L T., Berera, A. and de Fontaine, D., Phys. Rev. Lett. 60, 1065 (1988).Google Scholar
11 Berera, A. and de Fontaine, D., Phys. Rev. B 39, 6727 (1989).Google Scholar
12 Kikuchi, R. and Choi, J. S., Physica C 160, 347 (1989).Google Scholar
13 Sterne, P. and Wille, L T., in Proceedings of the Stanford International Conference on Superconductivity, to be published in Physica C.Google Scholar
14 Ceder, G., Asta, M., Carter, W. C., Sluiter, M., Mann, M. E., Kraitchman, M. and de Fontaine, D., submitted.Google Scholar
15 Finel, A. (private communication).Google Scholar
16 Specht, E. D. et al. , Phys. Rev. B 37, 7426 (1988).Google Scholar
17 Fisher, M. E. and Selke, W., Phys. Rev. Lett. 41, 1502 (1980).Google Scholar
18 Hubbard, J., Phys. Rev. B 17, 494 (1978).Google Scholar
19 Pokrovsky, V. L. and Uimin, G. V., J. Phys. C: Solid State Phys. 11, 3535 (1978).Google Scholar
20 de Fontaine, D., J. Phys. A: Math. Gen. 17, L713 (1984).Google Scholar
21 Khachaturyan, A. G. and Morris, J. W. Jr., Phys. Rev. Lett. 61, 215 (1988).Google Scholar