Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T20:48:41.475Z Has data issue: false hasContentIssue false

Optical Filter for Fabricating Self-Aligned Amorphous Si TFTS

Published online by Cambridge University Press:  15 February 2011

P. Mei
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
J. P Lu
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
C. Chua
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
J. Ho
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
Y. Wang
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
Get access

Abstract

Self-aligned structures for bottom-gate amorphous Si TFTs provide a number of advantages, including reduced parasitic capacitance, smaller device dimensions, and improved uniformity in device performance for large-area electronics. A difficult challenge in making self-aligned TFT structures is the necessity of making source/drain contacts that exhibit low contact resistances and that are precisely aligned relative to the gate electrode. In this article, we describe a novel process for fabricating self-aligned amorphous Si TFTs. This process utilizes a pulsed excimer laser (308 nm) to dope or to activate dopants in a-Si to form the source/drain contacts. An important feature of the device design is an optical filter to protect the a-Si channel region from radiation damage during the 308 nm laser process. However, the optical filter allows the transmission of the uv light for lithography exposure from the backside of the substrate to align the channel region with the gate electrode. This new process enables the fabrication of high performance self-aligned a-Si TFTs with poly-Si source and drain contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishida, S., Uchida, H., and Kaneko, S., Mat. Res. Soc. Symp. Proc. 219, 303 (1991).Google Scholar
2. Mei, P., Anderson, G., Boyce, J. B., Fork, D. K., and Lujan, R., Thin Film Transistor Technologies III, Electrochemical Soc Proc., PV 96–23, p51 (1997).Google Scholar
3. Mei, P., Lujan, R. A., and Boyce, J. B, US Patent 5,871,826 (1999).Google Scholar
4. Kkendall, D. L. and DeVries, D. B., Diffusion in Silicon., Haberecht, R. R. and Kern, E. L., Eds., Semiconductor Silicon, Electrochemical Society, New York, 358 (1969).Google Scholar
5. Mei, P., Boyce, J. B., Fork, D. K., Anderson, G., Ho, J., Lu, J., Hack, M., and Lujan, R., Mat. Res. Soc. Symp. Proc. 508, 3 (1998).Google Scholar
6.The reflectance simulation was performed using Vertical software package developed by Optical Concepts, Inc.Google Scholar
7. Luan, S. and Neudeck, G., J. Appl. Phys. 72(2), 766 (1992).Google Scholar
8. Mei, P., Boyce, J. B., Lujan, R., Fork, D., and Anderson, G., Digest of Technical Papers, AMLCD, 75 (1997).Google Scholar
9. Powell, M. J., Glasse, C., Curran, J. E., Hughes, J. R., Frech, I. D. and Martin, B. F., Mat. Res. Soc. Symp. Proc. 507, 91 (1998).Google Scholar
10. Lu, J. P., Mei, P., Lujan, R., and Boyce, J. B., to be published in Thin Film Transistor Technologies III, Electrochemical Soc Proc. (1998).Google Scholar
11. Lu, J. P., Mei, P., Chua, C., Ho, J., Wang, Y., Boyce, J. B., and Lujan, R., submitted to Mat. Res. Soc. Symp. Proc. (1999).Google Scholar
12. Rahn, J. T., Lemmi, F., Mei, P., Lu, J. P., Boyce, J. B., Street, R. A., Apte, R. B., Ready, S. E., Schuylenbergh, K. F. Van, Ho, J., Fulks, R., Weisfield, R. L., submitted to Mat. Res. Soc. Symp. Proc. (1999).Google Scholar