Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-15T12:37:08.860Z Has data issue: false hasContentIssue false

On the Role of Inversion Layer, Electronic Density of States and Interfacial Layer on the Barrier Height Formation of Amorphous-Silicon Schottky Diodes

Published online by Cambridge University Press:  26 February 2011

C. Manfredotti
Affiliation:
Experimental Physics Department, University of Torino, Via Pietro Giuria, 1 10125 Torino, Italy Gruppo Nazionale Di Struttura Della Materia Del CNR (Italy)
K. K. Sharma
Affiliation:
Experimental Physics Department, University of Torino, Via Pietro Giuria, 1 10125 Torino, Italy Gruppo Nazionale Di Struttura Della Materia Del CNR (Italy)
Get access

Abstract

Large variations in barrier height of a-Si:H Schottky diodes can be achieved by introducing thin inversion layer at the interface. Electronic density of states in the basic film depends upon the growth and surface preparation conditions.However, the high density of surface states of the order of 1013 cm-2eV -1usually found at a-Si:H film masks the role of bulk density of states which are ∼1016 cm-3 eV -1. As the density of surface states increases, the barrier height increases. At very large density (∼ 5 × 1014 cm-2 eV-1), Fermi level of the film pins to the neutral level and the barrier height becomes independent of the metal work function. Poisson's equation has been employed to illustrate the role of various charges contributed by the basic semiconductor, the inversion layer and the eletronic states. The concept of interfacial layer of 2 to 3 atomic dimensions with the permittivity of free space is essential to understand the mechanism of barrier height formation in a-Si:H Schottky diodes like similar devices in other semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carlson, D. E. and Wronski, C. R., Appl. Phys. Lett. 28, 671(1976).CrossRefGoogle Scholar
2. Wilson, J. I. B., McGill, J. and Kinmond, S., Nature(London) 272, 153(1978).CrossRefGoogle Scholar
3. Krishna, K. V., Guha, S. and Narshimhan, K. L., Solar Cells 4, 153(1981).CrossRefGoogle Scholar
4. Tsai, C. C.,Thomson, M. J. and Nemanich, R. J., Journal De Physique, Colloque C4, Supplement au n 10, Tome 42(1981).Google Scholar
5. Shannon, J. M., Appl. Phys. Lett. 24, 369(1974).CrossRefGoogle Scholar
6. Shannon, J. M., Appl. Phys. Lett. 25, 75(1974).CrossRefGoogle Scholar
7. Ponpon, J. P. and Siffert, P., J. Phys. (Paris) 36, L149(1975).CrossRefGoogle Scholar
8. Mullar, G., Kalbitzer, S., Spear, W. E., LeComber, P. G., International Conference on Amorphous and Liquid Semiconductors (CICL, Unversity of Edinburgh), 442–446(1977).Google Scholar
9. Beyer, W., Fischer, R., Appl. Phys. Lett. 31, 850(1977).CrossRefGoogle Scholar
10. Knights, J. c., Bieglesen, D. K., Solid State Commun. 22, 133(1977).CrossRefGoogle Scholar
11. Hasegava, S. and Imai, Y., Phil. Mag. B, 46, 239(1982).CrossRefGoogle Scholar
12. Jackson, W. B., Biegelsen, D. K., Nemanich, R. J., Knights, J. C., Appl. Phys. Lett., 42, 105(1983).CrossRefGoogle Scholar
13. Kanicki, J., Mat. Res. Soc. Symp. Proc. 95, 399(1987).CrossRefGoogle Scholar
14. Wronski, C. R., IEEE Trans. ED–24, 351(1977).CrossRefGoogle Scholar
15. Fritzsche, H., Tsai, C. C., Persan, P., Solid state Technol. 21, 55(1978).Google Scholar
16. Wronski, C. R. and Carlson, D. E., Solid State Commun. 23, 421(1977).CrossRefGoogle Scholar