Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:38:34.482Z Has data issue: false hasContentIssue false

Observation of Intersubband Absorption in Boron δ-Doped Si Layers

Published online by Cambridge University Press:  22 February 2011

J. S. Park
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Electrical Engineering Department, University of California, Los Angeles, CA 90024
R. P. G. Karunasiri
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Electrical Engineering Department, University of California, Los Angeles, CA 90024
K. L. Wang
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Y. J. Mii
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Electrical Engineering Department, University of California, Los Angeles, CA 90024
J. Murray
Affiliation:
Device Research Laboratory, 7619 Boelter Hall, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Get access

Abstract

Strong hole intersubband infrared absorption in δ-doped Si multiple quantum wells is observed. The structures consist of 10 periods of boron doped Si quantum wells and undoped Si barriers. Near 100 % infrared absorption is measured by FTIR spectrometer using waveguide structures. Absorption peaks ranging between 3–7 μm are measured, and these peaks can be tuned by varying the doping concentration in the δ-doped layer. Polarization dependence has been verified to agree with the intersubband selection rule. The estimated peak energy positions using a self-consistency calculation are considerably lower than experimental values, probably due to a large exchange energy of many body effects. This observation suggests multiple quantum well IR detectors using Si- technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Karunasiri, R. P. G., Park, J. S., Mii, Y. J. and Wang, K. L.. Appl Phys. Lett, 57 (24), 2585, 1990.CrossRefGoogle Scholar
[2] Tempel, G., Schwarz, N., Müller, F. and Koch, F.. Thin Solid Films, 184, 171, 1990.Google Scholar
[3] Park, J. S., Karunasiri, R. P. G., Mii, Y. J. and Wang, K. L.. Appl Phys. Lett., 58 (10), 1083, 1991.Google Scholar
[4] West, L. C., and Eglash, S. J.. Appl. Phys. Lett., 46, 1156, 1985.Google Scholar
[5] Levine, B. F., Malik, R. J., Walker, J., Choi, K. K., Bethea, C. G., Kleinman, D. A., and Vandenberg, J. M.. Appl Phys. Lett, 50, 273, 1987.Google Scholar
[6] Rhee, S. S., Karunasiri, R. P. G., Chern, C. H., Park, J. S. and Wang, K. L.. J. Vac. Sci. Tech., B7 (2), 327, 1989.Google Scholar
[7] Schubert, E. F., Luftman, H. S., Kopf, R. F., Headrick, R. L. and Kuo, J. M.. Appl Phys. Lett., 57 (17), 1799, 1990.Google Scholar
[8] Schwarz, N., Müller, F., Tempel, G., Koch, F. and Weimann, . Semicond. Sci. Technoi, 4, 571, 1989.Google Scholar
[9] Zenner, A., Koch, F., and Ploog, K.. Surf. Sci., 196, 671, 1988.Google Scholar
[10] Karunasiri, R. P. G., Park, J. S., Wang, K. L. and Rhee, S. S.. To be published.Google Scholar