Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-08T10:00:00.723Z Has data issue: false hasContentIssue false

Nucleation and Growth of Cubic Boron Nitride Films Produced by Ion-Assisted Pulsed Laser Deposition

Published online by Cambridge University Press:  22 February 2011

T. A. Friedmann
Affiliation:
Current address: Sandia National Laboratories, Albuquerque, NM 87185
D. L. Medlin
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
P. B. Mirkarimi
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
K. F. McCarty
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
E. J. Klaus
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
D. R. Boehme
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
H. A. Johnsen
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
M. J. Mills
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
D. K. Ottesen
Affiliation:
Sandia National Laboratories, Livermore CA, 94551
J. C. Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We are studying the boron nitride system by using a pulsed excimer laser to ablate from hexagonal BN (hBN) targets to form cubic BN (cBN) films. We are depositing BN films on heated (25 - 800°C) Si (100) surfaces and are using a broad-beam ion source operated with Ar and N2 source gasses to produce BN films with a high percentage of sp3-bonded cBN. In order to understand and optimize the growth and nucleation of cBN films, parametric studies of the growth parameters have been performed. The best films to date show >85% sp3-bonded BN as determined from Fourier-transform infrared (FTIR) reflection spectroscopy. High resolution transmission electron microscopy (TEM) and selected area electron diffraction confirm the presence of cBN in these samples. The films are polycrystalline and show grain sizes up to 30- 40 nm. We find from both the FTIR and TEM analyses that the cBN content in these films evolves with growth time. Initially, the films are deposited as hBN and the cBN nucleates on this hBN underlayer. Importantly, the position of the cBN IR phonon also changes with growth time. Initially this mode appears near 1130 cm-1 and the position decreases with growth time to a constant value of 1085 cm-1. Since in bulk cBN this IR mode appears at 1065 cm-1, a large compressive stress induced by the ion bombardment is suggested. In addition, we report on the variation in cBN percentage with temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pease, R. S., Acta. Cryst. 5, 356 (1952).Google Scholar
2 Herald, A., Marzluf, B., and Perio, P., C. R. Acad. Sci. 246, 1866 (1958).Google Scholar
3 Bundy, F. P., and Wentorf, R. H., J. Chem. Phys. 38, 1144 (1963).Google Scholar
4 Wentorf, R. H., J. Chem Phys. 26, 956 (1957).Google Scholar
5 Friedmann, T. A., . Mirkarimi, B., Medlin, D. L. , McCarty, K. F., Klaus, E. J., Boehme, D. R., Johnsen, H. A., Mills, M. J., Ottesen, D. K., and Barbour, J. C., Submitted to J. Appl. Phys. , (1993).Google Scholar
6 Friedmann, T. A., Clift, W. M., Johnsen, H. A., Klaus, E. J., McCarty, K. F., Medlin, D. L., Mills, M. J., and Ottesen, D. K., in Laser Ablation in Materials Processing: Fundamentals and Applications, Braren, D., Dubowski, J. J., and Norton, D. P., Eds. (Materials Research Society, Pittsburgh PA, 1993), vol. 285, pp. 507512.Google Scholar
7 Ballal, A. K., Salamanca-Riba, L., Taylor, C. A., and Doll, G. L., Thin Solid Films 224, 46 (1993).Google Scholar
8 Ueno, M., Hasegawa, K., Oshima, R., Onodera, A., Shimomura, O., Takemura, K., Nakae, H., Matsuda, T., and Hirai, T., Phys. Rev. B 45, 10226 (1992).Google Scholar
9 Kester, D. J., and Messier, R., J. Appl. Phys. 72, 504 (1992).Google Scholar
10 Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
11 Murakawa, M., and Watanabe, S., Surface and Coatings Tech. 43/44, 128 (1990).Google Scholar
12 Mieno, M., and Yoshida, T., Surf, and Coat. Techn. 52, 82 (1992).Google Scholar
13 McKenzie, D. R., McFall, W. D., Sainty, W. G., Davis, C. A., and Collins, R. E., Diamond and Related Materials 2, 970 (1993).Google Scholar
14 Medlin, D. L., Friedmann, T. A., Mirkarimi, P. B., Rez, P., Mills, M. J., and McCarty, K. F., Submitted to the Journal of Applied Physics , (1993).Google Scholar
15 Medlin, D. L., Friedmann, T. A., Mirkarimi, P. B., McCarty, K. F., and Mills, M. J., in Proceedings of the Materials Research Society Spring 1993 Meeting, Symposium O “Phase Transformations in Thin Films”, Atzman, M., Green, A. L., Harper, J. M. E., and Libera, M. R., Eds..Google Scholar
16 Thomas, J. Jr., Weston, N. E., and O’Connor, T. E., J. Amer. Chem. Soc. 84, 4619 (1963).Google Scholar
17 Geick, R., Penny, C. H., and Rupprecht, G., Phys. Rev. 146, 543 (1966).Google Scholar
18 Gielisse, P. J., Mitra, S. S., Plendl, J. N., Griffis, R. D., Mansur, L. C., Marshall, R., and Pascoe, E. A., Phys. Rev. 155, 1039 (1967).Google Scholar
19 Sherman, W. F., and Wilkinson, G. R., in Advances in Infrared and Raman Spectroscopy, Clark, R. J. H., and Hester, R. E., Eds. (Heyden, London, 1980), vol. 6, pp. 158339.Google Scholar
20 Friedmann, T. A., McCarty, K. F., Klaus, E. J., Barbour, J. C., Clift, W. M., Johnsen, H. A., Medlin, D. L., Mills, M. J., and Ottesen, D. K., accepted in “Thin Solid Films” , (1993).Google Scholar
21 Nastasi, M., and Mayer, J. W., Materials Science Reports 6, 1 (1991).Google Scholar