Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T10:30:48.991Z Has data issue: false hasContentIssue false

Nonlinear Optical Properties of Buckminsterfullerene Solutions

Published online by Cambridge University Press:  25 February 2011

Donna Brandelik
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Suite 103, Dayton, OH 45431
Daniel McLean
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Suite 103, Dayton, OH 45431
Mark Schmitt
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Suite 103, Dayton, OH 45431
Bob Epling
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Suite 103, Dayton, OH 45431
Chris Colclasure
Affiliation:
Dept. of Chemistry, United States Air Force Academy, P.O. Box 3089, Colorado Springs, CO 80840
Vince Tondiglia
Affiliation:
Science Applications International Corporation, 101 Woodman Dr., Suite 103, Dayton, OH 45431
Ruth Pachter
Affiliation:
Dept. of Chemistry, United States Air Force Academy, P.O. Box 3089, Colorado Springs, CO 80840
Keith Obermeier
Affiliation:
Materials Directorate, WL/MLPJ, Wright-Patterson AFB, OH 45433–6533
Robert L. Crane
Affiliation:
Materials Directorate, WL/MLPJ, Wright-Patterson AFB, OH 45433–6533
Get access

Abstract

Results on the nonlinear properties of solutions of Buckminsterfullerene in toluene are reported. Optical limiting thresholds are as low as 15 mJ/cm2 with multiple pulse stability. Evidence for a different mechanism than that applicable in graphitic carbon black suspensions is presented. The calculated second hyperpolarizability agrees with experimentally reported values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Miller, J. S., Adv. Mater., 3, 262 (1991).Google Scholar
[2] Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature, 318, 162 (1985).Google Scholar
[3] Pennisi, E., Science News, 140, 84 (1991).Google Scholar
[4] Fisher, J.E., et. al, Science, 252, 1288 (1991).Google Scholar
[5] Duelos, S. J., Blister, K., Haddon, R. C., Kortan, A. R., and Thiel, F. A., Nature 351, 380, (1982).Google Scholar
[6] Pennisi, E., Science News, 140, 120 (1991).Google Scholar
[7] Pennisi, E., Science News, 140, 127 (1991).Google Scholar
[8] W. J., , Byrne, H. J., and Cardin, D. J., Phys. Rev. Lett., 67, 1423 (1991).Google Scholar
[9] Hoshi, H., Nakamura, N., Maruyama, Y., Nakagawa, T., Suzuki, S., Shiromaru, H., and Achiba, Y., Japanese J. App. Phys., 30, 1397 (1991).Google Scholar
[10] Leite, R.C.C., Porto, S.P.S. and Damen, T.C., Appl. Phys. Lett., 10, 100 (1967).Google Scholar
[11] Hoffman, R.C., Stetyick, K.A., McLean, D.G. and Potember, R.S., J. Opt. Soc. B, 6, 772 (1989).Google Scholar
[12] Lawson, C.M., Euliss, G.W. and Michael, R.R., Appl. Phys. Lett., 58, 2195 (1991).Google Scholar
[13] Golub, I., Strobl, K., Optics Comm., in press.Google Scholar
[14] Nashhold, K., Brown, R., Walter, D., and Honey, R., SPIE Proc, 1105, 78 (1989).Google Scholar
[15] Mansour, K., van Stryland, E. W., and Soileau, M. J., SPIE Proc, 1105, 91 (1989).Google Scholar
[16] Ajie, H., et.al. J. Phys. Chem., 94, 8630 (1990).Google Scholar
[17] M., Said, A.A., Wei, T.H., Hagan, D.J. and van Stryland, E.W., IEEE J. Quantum Electronics, 26, 760(1990).Google Scholar
[18] Harris, J.M. and Dovichi, N.J., Analytical Chem., 52, 695 (1980).Google Scholar
[19] Stewart, J. J. P., “MOPAC” QCPE #455, Version 6.0 (1991).Google Scholar
[20] Kurtz, H. A., Stewart, J. J. P., and Dieter, K. M., J. Comp. Chem., 11, 82 (1990).Google Scholar
[21] Blau, W. J., Byrne, H. J., Cardin, D. J., Dennis, T. J., Hare, J. P., Kroto, H. W., Taylor, R., and Walton, D. R. M., Phys. Rev. Lett., 67, 11 (1991).Google Scholar