Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-21T13:07:05.676Z Has data issue: false hasContentIssue false

Non-Hydride Group V Sources for Omvpe

Published online by Cambridge University Press:  28 February 2011

G.B. Stringfellow*
Affiliation:
Departments of Materials Science and Engineering and Electrical EngineeringUniversity of Utah, Salt Lake City, Utah 84112
Get access

Abstract

A major limitation to the continuing development of organometallic vapor phase epitaxy (OMVPE) for the growth of II/V semiconductor materials is the hazard posed by the hydride sources, AsH3 and PH3, which are virtually universally used, in high pressure cylinders, as the group V source materials for the growth of the highest quality materials. The set of stringent requirements for an organometallic group V source, which includes a high vapor pressure (>50 Torr) and freedom from undesirable carbon contamination, eliminates most commonly available non-hydride group V sources. Recent research on newly developed sources has shown considerable promise. The entire area of group V sources, including the elemental sources, for OMVPE growth of II/V materials will be reviewed. The sources with no hydrogen atoms attached to the group V atom, the elemental, trimethyl-V, and triethyl-V, sources all appear to give unacceptably high carbon incorporation, as does dimethylarsine. Diethylarsine, which has one H attached to the As, produces high quality GaAs. Tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP) appear to be promising source materials. TBP has a very low toxicity, a vapor pressure ideal for OMVPE growth, and the pyrolysis occurs at lower temperatures than for PH3. No carbon contamination can be attributed to the TBP. Control of the As/P ratio in OMVPE grown GaAsP is much improved for TBP as compared with PH3 due to the more rapid pyrolysis. TBAs has similar attributes including a favorable vapor pressure and lower pyrolysis temperature than AsH3. The substitution of TBAs for AsH3 results in no observable increase in carbon in the epitaxial GaAs. Phenylarsine is a similar source, with a phenyl radical substituted for a single H atom on AsH3. The vapor pressure of phenylarsine is quite low and the pyrolysis temperature is expected to be some what lower than that for AsH3. Limited results indicate that carbon incorporation in GaAs is acceptable only when TEGa is the group V source.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Stringfellow, G.B. Organometallic VaporPhase Epitay: TheoryandPmctice (Academic Press, Boston, 1989).Google Scholar
2) CRC Handbook of Laboratory Safety, Steere, N.V., ed. (Chemical Rubber Co., Cleveland, Ohio, 1967).Google Scholar
3) Irving, N. Sax in Dangerous Properties of Industrial Materials (VanNostrand Reinhold, New York, 1979).Google Scholar
4) Larsen, C.A., Buchan, N.I., and Stringfellow, G.B., Appl. Phys. Lett. 52 480 (1988).CrossRefGoogle Scholar
5) Buchan, N.I., Larsen, C.A., and Stringfellow, G.B., Appl. Phys. Lett. 51 1024 (1987).CrossRefGoogle Scholar
6) Stringfellow, G.B., in Semiconductors and Semimetals, Vol. 22, ed. Tsang, W. (Academic Press, 1985), p. 209.Google Scholar
7) Kurtz, S.R., Olson, J.M., and Kibbler, A., Paper 03, presented at the Electronic Materials Conference, Boulder, Co, June 1988.Google Scholar
8) Chen, C.H., Larsen, C.A., Stringfellow, G.B., Brown, D.W., and Robertson, A.J., J. Crystal Growth 77 11 (1986).CrossRefGoogle Scholar
9) Saxena, R.R., Fouquet, J.E., Sardi, V.M., and Moon, R.L., Appl. Phys. Lett. 53 304 (1988).CrossRefGoogle Scholar
10) Kuech, T.F. and Veuhoff, E., J. Crystal Growth 68 148 (1984).CrossRefGoogle Scholar
11) Shastry, S.K., Zemon, S., Kenneson, D.G., and Lambert, G., Appl. Phys. Lett. 52 150 (1988).CrossRefGoogle Scholar
12) Bhat, R., O'Connor, P., Temkin, H., Dingle, R., and Keramidas, V.G., Inst. Phys. Conf. Ser. 63, Ed. T. sugano (Inst. Phys., London, 1982) p. 101.Google Scholar
13) Bhat, R., J. Electron. Mater. 14 433 (1985).CrossRefGoogle Scholar
14) Kuck, M., Baumann, J.A., Schachter, R., Raccah, P.M., (private communication).Google Scholar
15) Kuck, M. A., Marek, H.S., and Weiner, W., Paper E9.26 Presented at Materials Research Society Meeting, November 31-December 3, 1988, Boston.Google Scholar
16) Naitoh, M. and Umeno, M., Japan. J. Appl. Phys. 26 L1538 (1987).CrossRefGoogle Scholar
17) Benz, K.W., Renz, H., Weidlein, J., and Pilkuhn, M.H., J. Electron. Mater. 10 185 (1981).CrossRefGoogle Scholar
18) Cherng, M.J., Cohen, R.M., and Stringfellow, G.B. J. Electron. Mater. 13 799 (1984).CrossRefGoogle Scholar
48) Cooper, C.B., M.H. Ludowise, Aebi, V., and Moon, R.L., Electron. Lett. 16 20 (1980).CrossRefGoogle Scholar
19) Lum, R.M., Klingert, J.K., Kisker, D.W., Tennant, D.M., Morris, M.D., Malm, D.L., Kovalchick, J., and Heimbrook, L.A., J. Electron. Mater. 17101 (1988).Google Scholar
20) Moss, R. H. and Evans, J.S., J. Crystal Growth 55 129 (1981).CrossRefGoogle Scholar
21) Speckman, D.M. and Wendt, J.P., Appl. Phys. Lett. 50 676 (1987).CrossRefGoogle Scholar
22) Hata, M., Zempo, Y., Fukuhara, N., Sawara, K., and Maeda, T., Paper E-4, Electronic Materials Conference, Santa Barbara, California, June 1987.Google Scholar
23)CVD News, 2, (16), (Morton Thiokol, Inc, Woburn Massachusetts, November 1988).Google Scholar
24) Bhat, R., Koza, M.A., and Skromme, B.J., Appl. Phys. Lett. 50 1194 (1987).CrossRefGoogle Scholar
25) Chen, C.H., Reihlen, E.H., and Stringfellow, G.B., J. Crystal Growth (to be published).Google Scholar
26) Li, S.H., Larsen, C.A., Buchan, N.I., and Stringfellow, G.B., J. Electro. Mater. (to be published).Google Scholar
27) Li, S.H., Larsen, C.A., Buchan, N.I., and Stringfellow, G.B., J. Appl. Phys. (to be published).Google Scholar
28) Li, S.H., Buchan, N.I., Larsen, C.A., and Stringfellow, G.B., J. Crystal Growth (to be published).Google Scholar
29) Chen, C.H., Cao, D.S., and Stringfellow, G.B., J. Electron. Mater. 17 67 (1988).CrossRefGoogle Scholar
30) Chen, C.H., Larsen, C.A., and Stringfellow, G.B., Appl. Phys. Lett. 50 218 (1987).CrossRefGoogle Scholar
31) Larsen, C.A., Buchan, N.I., Li, D.S., and Stringfellow, G.B., J. Crystal Growth 94 663 (1989).CrossRefGoogle Scholar
32) Lum, R.K., Klingert, J.K., and Lamont, M.G., Appl. Phys. Lett. 50 284 (1987).CrossRefGoogle Scholar
33) Haacke, G., Watkins, S., and Burkhard, H., Paper A.4.12 of this proceedings. 179Google Scholar
34) Brauers, A., Kayser, O., Kall, R., Heinecke, H., Balk, P., and Hofmann, H., J. Crystal Growth 93 7 (1988).CrossRefGoogle Scholar
35) Samuelson, L., Omling, P., Titze, H. and Grimmeiss, H.G., J. Physique 43 C5323 (1982).Google Scholar
36) Fukui, T. and Horikoshi, Y., Japan. J. Appl. Phys. 14 L551 (1980).CrossRefGoogle Scholar
37)R.M. Lum (unpublished results). (see Fig. 4.18 in Ref. [1]).Google Scholar
38) DenBaars, S.P., Maa, B.Y., Dapkus, P.D., Danner, A.D., and Lee, H.C., J. Crystal Growth 77 188 (1986).CrossRefGoogle Scholar
39) Viscogliosi, M., , Calbrick, and Watkins, S. (private communication).Google Scholar