Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-27T16:26:09.705Z Has data issue: false hasContentIssue false

Multiscale Simulations of the RF Diode Sputtering of Copper

Published online by Cambridge University Press:  10 February 2011

H. N. G. Wadley
Affiliation:
Intelligent Processing of Materials Laboratory Department of Materials science and Engineering University of Virginia, Charlottesville, VA 22903
W. Zou
Affiliation:
Intelligent Processing of Materials Laboratory Department of Materials science and Engineering University of Virginia, Charlottesville, VA 22903
X. W. Zhou
Affiliation:
Intelligent Processing of Materials Laboratory Department of Materials science and Engineering University of Virginia, Charlottesville, VA 22903
J. F. Groves
Affiliation:
Intelligent Processing of Materials Laboratory Department of Materials science and Engineering University of Virginia, Charlottesville, VA 22903
S. Desa
Affiliation:
SC Solutions Santa Clara, CA 95054
R. Kosut
Affiliation:
SC Solutions Santa Clara, CA 95054
E. Abrahamson
Affiliation:
SC Solutions Santa Clara, CA 95054
S. Ghosal
Affiliation:
SC Solutions Santa Clara, CA 95054
A. Kozak
Affiliation:
SC Solutions Santa Clara, CA 95054
D. X. Wang
Affiliation:
Nonvolatile Electronics, Inc. Eden Prairie, MN 55344-3617
Get access

Abstract

The morphology and microstructure of RF diode sputter deposited materials is a complicated function of many parameters of the reactor operating conditions. Using a combination of computational fluid dynamics (CFD), RF plasma, molecular dynamics (MD) sputter, and direct simulation Monte Carlo (DSMC) transport models, a multiscale approach has been used to analyze the RF diode sputtering of copper. The CFD model predicts the velocity and pressure distribution of the working gas flows in the deposition chamber. The plasma model uses these CFD results to compute ion energies and fluxes at the target and substrate. The MD model of sputtering is used to determine the initial energy distribution of sputtered atoms and reflected neutral working gas atoms and both of their angular distributions. A DSMC transport model then deduces the target atom deposition efficiency, the spatial distribution of the film thickness, the target and reflected neutral atoms energy and impact angle distributions given reactor operating input conditions such as background pressure, temperature, gas type, together with the reactor geometry. These results can then be used in atomistic growth models to begin a systematic evaluation of surface morphology, nanoscale structure, and defects dependences upon the reactor design and its operating conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levy, P. M., J. Magn. Magn. Mater., 140–144, 485(1995).Google Scholar
2. Stiles, M. D., Phys. Rev., B48, 7238(1993).Google Scholar
3. Butler, W. H., Zhang, X. G., Nicholson, D. M. C. and MacLaren, J. M., Phys. Rev., 52B, 13399(1995).Google Scholar
4. Daughton, J., Brown, J., Chen, E., Beech, R., Pohm, A. and Kude, W., IEEE Trans. Magn., 30, 4608 (1994).Google Scholar
5. Tsang, C., Fontana, R. E., Lin, T., Heim, D. E., Speriosu, V. S., Gurney, B. A. and Williams, M. L., IEEE Trans. Magn., 30, 3801 (1994).Google Scholar
6. Simonds, J. L., Phys. Today, April, 26(1995).Google Scholar
7. Zhou, X. W. and Wadley, H. N. G., J. Appl. Phys. 84, 2301 (1998).Google Scholar
8. Fullerton, E. E., Kelly, D. M., Guimpel, J. and Schuller, I. K., Phys. Rev. Lett., 68, 859 (1992).Google Scholar
9. Yan, M. L., Lai, W. Y., Wang, Y. Z., Li, S. X. and Yu, C. T., J. Appl. Phys., 77, 1816 (1995).Google Scholar
10. Hylton, T. L., Coffey, K. R., Parker, M. A. and Howard, J. K., J. Appl. Phys., 75, 7058 (1994).Google Scholar
11. Honda, S., Ohmoto, S., Imada, R. and Nawate, M., J. Magn. Magn. Mater., 126, 419 (1993).Google Scholar
12. Pollard, R. J., Wilson, M. J. and Grundy, P. J., J. Magn. Magn. Mater., 146, L1 (1995).Google Scholar
13. Zhang, H., Cochrane, R. W., Huai, Y., Mao, M., Bian, X. and Muir, W. B., J. Appl. Phys., 75, 6534 (1994).Google Scholar
14. McGuire, T. R., Harper, J. M., Cabral, C. Jr and Plaskett, T. S., J. Appl. Phys., 76, 6601 (1994).Google Scholar
15. Kim, J. D., Petford-Long, A. K., Jakubovics, J. P., Evetts, J. E. and Somekh, R., J. Appl. Phys., 76, 6513 (1994).Google Scholar
16. Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt, W. P. Jr and Laloee, R., J. Magn. Magn. Mater., 94, L1 (1991).Google Scholar
17. Parkin, S. S. P., Li, Z. G. and Smith, D. J., Appl. Phys. Lett., 58, 2710 (1991).Google Scholar
18. Sato, H., Kobayashi, Y., Aoki, Y., Loloee, R. and Pratt, W. P. Jr, J. Magn. Magn. Mater., 140–144, 567(1995).Google Scholar
19. Highmore, R. J., Shih, W. C., Somekh, R. E. and Evetts, J. E., J. Magn. Magn. Mater., 116, 249 (1992).Google Scholar
20. Kagawa, K., Kano, H., Okabe, A., Suzuki, A. and Hayashi, K., J. Appl. Phys., 75, 6540 (1994).Google Scholar
21. Meguro, K., Hirano, S., Jimbo, M., Tsunashima, S. and Uchiyama, S., J. Magn. Magn. Mater, 140–144, 601(1995).Google Scholar
22. Kools, J. C. S., J. Appl. Phys., 77, 2993 (1995).Google Scholar
23. Anthony, T. C., Brug, J. A. and Zhang, S., IEEE Trans. Magn., 30, 3819 (1994).Google Scholar
24. Yang, Y., Johnson, R. A. and Wadley, H. N. G., Acta Mater., 45, 1455 (1997).Google Scholar
25. Andersen, H. H., Bay, H. L. and Roosendaal, H. E., in Topics in Applied Physics, Sputtering by Particle Bombardment I, edited by Behrisch, R. (Springer-Verlag, Berlin Heidelberg, 1981), Vol. 47, p. 145; 219.Google Scholar
26. Hofer, W. O., in Topics in Applied Physics, Sputtering by Particle Bombardment III, edited by Behrisch, R. and Wittmaack, K. (Springer-Verlag, Berlin Heidelberg, 1991), Vol. 64, p. 15.Google Scholar