Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T17:09:37.655Z Has data issue: false hasContentIssue false

Monolithic Integrated a-Si:H based pin-Diodes with Orthogonal Liquid Light Guidance Structures for Lab-on-Microchip Applications

Published online by Cambridge University Press:  01 February 2011

Heiko Schäfer
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, 57076, Germany, +49 271 740 4255, +49 271 740 4512
Konstantin Seibel
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, 57076, Germany
Lars Schöler
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, 57076, Germany
Markus Böhm
Affiliation:
[email protected], University of Siegen, Institute for Microsystem Technologies, Hölderlinstr. 3, Siegen, 57076, Germany
Get access

Abstract

We report the fabrication of an amorphous silicon based fluorescence sensor for miniaturized total analysis systems along with experimental results on optical excitation and detection elements. The pin-photodiode exhibits a dynamic range of 110dB and a room temperature dark current of less than 3000 charge carriers per ms according to a detector area of 0.1256mm2. The spectral response is ranging from 320nm to 780nm with a maximum at 600nm @ 80% quantum efficiency. To provide high sensitivity, the excitation light irradiates the fluid orthogonally to the active sensor detection direction by means of specifically designed microfluidic capillaries filled with e.g. methylene iodide or 1,2-o-dibrombenzene. The liquid core, which is enclosed by solid cladding materials, has been calculated to dimensions of a width of 16.75µm or 59.67µm with a height from 15µm to 50µm according to a number of propagating modes inside of 16 or 57, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ng, J. M., Gitlin, I., Stroock, A. D., Whitesides, G. M., Electrophoresis, 23(20), 34613473 (2002).Google Scholar
2 Verpoorte, E., Lab Chip, 3, 42N52N (2003).Google Scholar
3 Mogensen, K. B., Klank, H., Kutter, J. P., Electrophoresis, 25, 34983512 (2004).Google Scholar
4 Yotter, R. A., Wilson, D. M., IEEE Sensors Journal, 3(3), 288303 (2003).Google Scholar
5 Brecht, A., Gauglitz, G., Sensors and Actuators B, 38-39, 17 (1997).Google Scholar
6 Kamei, T., Paegel, B. M., Scherer, J. R., Skelley, A. M., Street, R. A. and Mathies, R. A., Anal. Chem., 75, 53005305 (2003).Google Scholar
7 Schäfer, H., Seibel, K., Walder, M., Schöler, L., Pletzer, T., Waidelich, M., Ihmels, H., Schmittel, M., Ehrhardt, D., Böhm, M., Proc. Micro Total Analysis Systems 2004, vol. 2, 443445 (2004).Google Scholar
8 Schäfer, H., Seibel, K., Walder, M., Schöler, L., Pletzer, T., Waidelich, M., Ihmels, H., Ehrhardt, D., Böhm, M., Proc. Micro Electro Mechanical Systems 2005, 758761 (2005).Google Scholar
9 Schäfer, H., Chemnitz, S., Koizy, V., Fischer, A., Ehrhardt, D., Böhm, M., Nano-Micro-Interface Conference 2003, Berlin, Fecht, H.J., Werner, M. (eds), The Nano-Micro Interface, Wiley-VCM, Weinheim, 119137 (2004).Google Scholar
10 Stone, J., IEEE J. Quantum Electron., QE-8, 386388 (1972).Google Scholar
11 Stone, J., Appl. Phys. Lett., 20, 239240 (1972).Google Scholar
12 Ogilvie, G. J., Esdaile, R. J., Electron. Lett., 8, 533534 (1972).Google Scholar
13 Payne, D. N., Gambling, W. A., Electron. Lett., 8, 374376 (1972).Google Scholar
14 Rieve, P., Sommer, M., Wagner, M., Seibel, K., Böhm, M., Journal of Non-Crystalline Solids, 266-269, 11681172 (2000).Google Scholar