Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T21:47:40.149Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxial Growth of Very High Mobility Two-Dimensional Electron Gases in Si/GeSi Heterostructures

Published online by Cambridge University Press:  22 February 2011

Y. H. Xie
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
E. A. Fitzgerald
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Y. J. Mii
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
D. Monroe
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
F. A. Thiel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
B. E. Weir
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
L. C. Feldman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

We report the fabrication of modulation doped Si/Gex Si1−x heterostructures by molecular beam epitaxy. The samples are characterized by Rutherford backscattering spectrometry, cross-sectional transmission electron microscopy, electron beam induced current, Hall measurement, and the magnetoresistance (Shubnikov-de Haas) measurements. Threading dislocation densities of = 106cm−2 are observed for relaxed Ge0.3Si0.7 films on Si (100). The modulation doped structures fabricated on these Ge0.3 Si0.7 films contain two-dimensional electron gases with mobilities ranging from 60,000 to 96,000 cm2/V - s at 4.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Submicron Integrateti Circuits”, Watts, R. K, Edit, Wiley-Interscience, New York, (1989);Google Scholar
[2] Liu, R. and Ng, K. K., private communication;Google Scholar
[3] Kukushkin, I. V., and Timofeev, V. B., Sov. Phys. JETP, 67. 594 (1988);Google Scholar
[4] Pfeiffer, L., West, K. W., Stormer, H. L., and Baldwin, K. W., Appl. Phys. Lett., 55, 1888 (1989);Google Scholar
[5] Esaki, L., and Tsu, R., Internal Report RC 2418, IBM Research, March 26, 1969;Google Scholar
[6] Fitzgerald, E. A., Xie, Y. H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mii, Y. J., and Weir, B. E., to be published in Appl. Phys. Lett.Google Scholar
[7] Bardeen, J., and Shockley, W., Phys. Rev., 80, 72, (1950);Google Scholar
[8] Sze, S. M., <Physics of Semiconductor Devices>, 2nd Ed., Appendix G, Wiley and Sons, New York, (1981).Google Scholar
[9] Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H. J., Phys. Rev. Lett. 54, 2441 (1985).CrossRefGoogle Scholar