Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T15:45:47.376Z Has data issue: false hasContentIssue false

Modelling the Chemical Behaviour of Radionuclides in Waste Disposal Site in a Granitic Environment - a Chemical Thermodynamic Approach

Published online by Cambridge University Press:  28 February 2011

Robert Fabriol
Affiliation:
RRGM (SGN/GCH), B.P. 6009, 45060 Orleans, France
Gerald Ouzounian
Affiliation:
ANDRA, Fontenay-aux-Roses, France
Albert Genter
Affiliation:
RRGM (SGN/GCH), B.P. 6009, 45060 Orleans, France
Get access

Abstract

Limiting concentrations of radionuclides (RN) in a granitic environment are determined by computer modelling of a disposal site with quartz sand and clay engineered barriers. Six RN (Sr, U, Pu, Np, Th and Tc) are studied. Temperature is varied with distance from the host rock to waste from 25 to 200°C, The behaviour of these elements appears to be iindependent, of the barrier material and strongly dependent on temperature effect on mineral solubilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Genter, A., Géothermie Roches Chaudes Sèches. Le granite de Soultz-sous-Forets (Bas-Rhin, France). Fracturation naturelle, alterations hydro-thermales et interaction eau-roche, BRGM document n 185, 1989.Google Scholar
2. Tsuzuki, Y., Calculating the theoretical change in the mode of a rock by a simple and ideal water-rock interaction, Geochem. J. 23, 117128 (1989).Google Scholar
3. Fabriol, R., Piantone, P., Genter, A., Modelling hydrothermal alteration of granite. Thermodynamic approach, 6th International Symposium on Water-Rock Internation (WRI6), Malvern, 38 Aug. 1989.Google Scholar
4. Lehmann, J., Fabriol, R., CEQCSY: un nouveau code de calcul d‘équilibre des systèmes multiphasés, Rapport CCE 12299 FR (1989).Google Scholar
5. Wolery, T.J., Calculation of chemical equilibrium between aqueous solution and minerals: the EQ3/6 software package, UCRL-52658, LLNL (1979).Google Scholar
6. Wolery, T.J., A computer program for geochemical aqueous speciation-solubility calculations: User’s guide and documentation, UCRL-53414, LLNL (1983).Google Scholar
7. Dhoste, M., Les granitoïdes de la moitié nord du département des Deux Sèvres, Thèse de Doctorat es-Sciences, Univ. de Poitiers (1980).Google Scholar
8. Lehmann, J., Roux, J., Calculation of activity-composition relations in multisite solid solutions: the example of AB2O4 spinels, Contr. Miner. Petrol. 87, 328337 (1984).Google Scholar
9. Lehmann, J., Roux, J., Experimentation and theoretical study of (Fe2−, Mg) (Ag,Fe3−)2O4 spinels: activity-composition relationships, miscibility gap, vacancy contents geochim. Cosmochim. Acta 50, 17651783 (1986).Google Scholar
10. Read, D. and Broyd, T.W., CHEMVAL project. Report on stage 1 : Verification of speciation models. Report CCE EUR 12237 EN (1989).Google Scholar
11. Read, D. and Broyd, T.W., CHEMVAL project. Report on stage 2 : Application of speciation models to laboratory and fiel data sets. Report DOE/RW M0979.002 (1990).Google Scholar